skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Linton, Mark"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The trajectories of coronal mass ejections (CMEs) are often seen to deviate substantially from a purely radial propagation direction. Such deviations occur predominantly in the corona and have been attributed to “channeling” or deflection of the eruptive flux by asymmetric ambient magnetic fields. Here, we investigate an additional mechanism that does not require any asymmetry of the preeruptive ambient field. Using magnetohydrodynamic numerical simulations, we show that the trajectories of CMEs through the solar corona can significantly deviate from the radial direction when propagation takes place in a unipolar radial field. We demonstrate that the deviation is most prominent below ∼15Rand can be attributed to an “effectiveI×Bforce” that arises from the intrusion of a magnetic flux rope with a net axial electric current into a unipolar background field. These results are important for predictions of CME trajectories in the context of space-weather forecasts, as well as for reaching a deeper understanding of the fundamental physics underlying CME interactions with the ambient fields in the extended solar corona. 
    more » « less
  2. This white paper is on the HMCS Firefly mission concept study. Firefly focuses on the global structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the deciphering of the solar cycle, the conditions leading to the explosive activity, and the structure and dynamics of the corona as it drives the heliosphere. 
    more » « less