Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 16, 2026
-
Free, publicly-accessible full text available June 16, 2026
-
We investigate the impact of low-rank interference on the problem of distinguishing between two seabed types using ambient sound as an acoustic source. The resulting frequency-domain snapshots follow a zero-mean, circularly-symmetric Gaussian distribution, where each seabed type has a unique covariance matrix. Detecting changes in the seabed type across distinct spatial locations can be formulated as a two-sample hypothesis test for equality of covariance, for which Box's M-test is the classical solution. Interference sources such as passing ships result in additive noise with a low-rank covariance that can reduce the performance of hypothesis testing. We first present a method to construct a worst-case interference field, making hypothesis testing as difficult as possible. We then provide an alternating optimization procedure to recover the interference-free covariance matrix. Experiments on synthetic data show that the optimized interferer can greatly reduce hypothesis testing performance, while our recovery method perfectly eliminates this interference for a sufficiently small interference rank. On real data from the New England Shelf Break Acoustics experiment, we show that our approach successfully mitigates interference, allowing for accurate hypothesis testing and improving bottom loss estimation.more » « lessFree, publicly-accessible full text available February 1, 2026
-
We consider the problem of active learning for level set estimation (LSE), where the goal is to localize all regions where a function of interest lies above/below a given threshold as quickly as possible. We present a finite-horizon search procedure to perform LSE in one dimension while optimally balancing both the final estimation error and the distance traveled during active learning for a fixed number of samples. A tuning parameter is used to trade off between the estimation accuracy and distance traveled. We show that the resulting optimization problem can be solved in closed form and that the resulting policy generalizes existing approaches to this problem. We then show how this approach can be used to perform level set estimation in two dimensions, under some additional assumptions, under the popular Gaussian process model. Empirical results on synthetic data indicate that as the cost of travel increases, our method's ability to treat distance nonmyopically allows it to significantly improve on the state of the art. On real air quality data, our approach achieves roughly one fifth the estimation error at less than half the cost of competing algorithms.more » « less
-
This article presents a theoretical analysis of optimally distinguishing among environmental parameters from ocean ambient sound. Recent approaches to this problem either focus on parameter estimation or attempt to classify the environment into one of many known types through machine learning. This classification problem is framed as one of hypothesis testing on the received ambient sound snapshots. The resulting test depends on the Kullback-Leibler divergence (KLD) between the distributions corresponding to different environments or sediment types. Analysis of the KLD shows the dependence on the signal-to-noise ratio, the underlying signal subspace, and the distribution of eigenvalues of the respective covariance matrices. This analysis provides insights into both when and why successful hypothesis testing is possible. Experiments demonstrate that our analysis provides insight as to why certain environmental parameters are more difficult to distinguish than others. Experiments on sediment types from the Naval Oceanographic Office Bottom Sediment type database show that certain types are indistinguishable for a given array configuration. Further, the KLD can be used to provide a quantitative alternative to examining bottom loss curves to predict array processing performance.more » « less
-
We train five models using two machine learning (ML) regression algorithms (i.e., linear regression and XGBoost) to predict hydrothermal upflow in the Great Basin. Feature data are extracted from datasets supporting the INnovative Geothermal Exploration through Novel Investigations Of Undiscovered Systems project (INGENIOUS). The label data (the reported convective signals) are extracted from measured thermal gradients in wells by comparing the total estimated heat flow at the wells to the modeled background conductive heat flow. That is, the reported convective signal is the difference between the background conductive heat flow and the well heat flow. The reported convective signals contain outliers that may affect upflow prediction, so the influence of outliers is tested by constructing models for two cases: 1) using all the data (i.e., -91 to 11,105 mW/m2), and 2) truncating the range of labels to include only reported convective signals between -25 and 200 mW/m2. Because hydrothermal systems are sparse, models that predict high convective signal in smaller areas better match the natural frequency of hydrothermal systems. Early results demonstrate that XGBoost outperforms linear regression. For XGBoost using the truncated range of labels, half of the high reported signals are within < 3 % of the highest predictions. For XGBoost using the entire range of labels, half of the high reported signals are in < 13 % of the highest predictions. While this implies that the truncated regression is superior, the all-data model better predicts the locations of power-producing systems (i.e., the operating power plants are in a smaller fraction of the study area given by the highest predictions). Even though the models generally predict greater hydrothermal upflow for higher reported convective signals than for lower reported convective signals, both XGBoost models consistently underpredict the magnitude of higher signals. This behavior is attributed to low resolution/granularity of input features compared with the scale of a hydrothermal upflow zone (a few km or less across). Trouble estimating exact values while still reliably predicting high versus low convective signals suggests that a future strategy such as ranked ordinal regression (e.g., classifying into ordered bins for low, medium, high, and very high convective signal) might fit better models, since doing so reduces problems introduced by outliers while preserving the property of larger versus smaller signals.more » « less
An official website of the United States government

Full Text Available