We investigate the impact of low-rank interference on the problem of distinguishing between two seabed types using ambient sound as an acoustic source. The resulting frequency-domain snapshots follow a zero-mean, circularly-symmetric Gaussian distribution, where each seabed type has a unique covariance matrix. Detecting changes in the seabed type across distinct spatial locations can be formulated as a two-sample hypothesis test for equality of covariance, for which Box's M-test is the classical solution. Interference sources such as passing ships result in additive noise with a low-rank covariance that can reduce the performance of hypothesis testing. We first present a method to construct a worst-case interference field, making hypothesis testing as difficult as possible. We then provide an alternating optimization procedure to recover the interference-free covariance matrix. Experiments on synthetic data show that the optimized interferer can greatly reduce hypothesis testing performance, while our recovery method perfectly eliminates this interference for a sufficiently small interference rank. On real data from the New England Shelf Break Acoustics experiment, we show that our approach successfully mitigates interference, allowing for accurate hypothesis testing and improving bottom loss estimation.
more »
« less
On the limits of distinguishing seabed types via ambient acoustic sound
This article presents a theoretical analysis of optimally distinguishing among environmental parameters from ocean ambient sound. Recent approaches to this problem either focus on parameter estimation or attempt to classify the environment into one of many known types through machine learning. This classification problem is framed as one of hypothesis testing on the received ambient sound snapshots. The resulting test depends on the Kullback-Leibler divergence (KLD) between the distributions corresponding to different environments or sediment types. Analysis of the KLD shows the dependence on the signal-to-noise ratio, the underlying signal subspace, and the distribution of eigenvalues of the respective covariance matrices. This analysis provides insights into both when and why successful hypothesis testing is possible. Experiments demonstrate that our analysis provides insight as to why certain environmental parameters are more difficult to distinguish than others. Experiments on sediment types from the Naval Oceanographic Office Bottom Sediment type database show that certain types are indistinguishable for a given array configuration. Further, the KLD can be used to provide a quantitative alternative to examining bottom loss curves to predict array processing performance.
more »
« less
- Award ID(s):
- 2046175
- PAR ID:
- 10536388
- Publisher / Repository:
- The Journal of the Acoustical Society of America
- Date Published:
- Journal Name:
- The Journal of the Acoustical Society of America
- Volume:
- 154
- Issue:
- 5
- ISSN:
- 0001-4966
- Page Range / eLocation ID:
- 2892 to 2903
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Blind sensor calibration for spectrum estimation is the problem of estimating the unknown sensor calibration parameters as well as the parameters-of-interest of the impinging signals simultaneously from snapshots of measurements obtained from an array of sensors. In this paper, we consider blind phase and gain calibration (BPGC) problem for direction-of-arrival estimation with multiple snapshots of measurements obtained from an uniform array of sensors, where each sensor is perturbed by an unknown gain and phase parameter. Due to the unknown sensor and signal parameters, BPGC problem is a highly nonlinear problem. Assuming that the sources are uncorrelated, the covariance matrix of the measurements in a perfectly calibrated array is a Toeplitz matrix. Leveraging this fact, we first change the nonlinear problem to a linear problem considering certain rank-one positive semidefinite matrix, and then suggest a non-convex optimization approach to find the factor of the rank-one matrix under a unit norm constraint to avoid trivial solutions. Numerical experiments demonstrate that our proposed non-convex optimization approach provides better or competitive recovery performance than existing methods in the literature, without requiring any tuning parameters.more » « less
-
In everyday social environments, demands on attentional resources dynamically shift to balance our attention to targets of interest while alerting us to important objects in our surrounds.The current study uses electroencephalography to explore how the push-pull interaction between top-down and bottom-up attention manifests itself in dynamic auditory scenes. Using natural soundscapes as distractors while subjects attend to a controlled rhythmic sound sequence, we find that salient events in background scenes significantly suppress phase-locking and gamma responses to the attended sequence, countering enhancement effects observed for attended targets. In line with a hypothesis of limited attentional resources, the modulation of neural activity by bottom-up attention is graded by degree of salience of ambient events. The study also provides insights into the interplay between endogenous and exogenous attention during natural soundscapes, with both forms of attention engaging a common fronto-parietal network at different time lags.more » « less
-
Generative adversarial networks (GANs) are innovative techniques for learning generative models of complex data distributions from samples. Despite remarkable recent improvements in generating realistic images, one of their major shortcomings is the fact that in practice, they tend to produce samples with little diversity, even when trained on diverse datasets. This phenomenon, known as mode collapse, has been the main focus of several recent advances in GANs. Yet there is little understanding of why mode collapse happens and why recently proposed approaches are able to mitigate mode collapse. We propose a principled approach to handling mode collapse, which we call packing. The main idea is to modify the discriminator to make decisions based on multiple samples from the same class, either real or artificially generated. We borrow analysis tools from binary hypothesis testing—in particular the seminal result of Blackwell [6]—to prove a fundamental connection between packing and mode collapse. We show that packing naturally penalizes generators with mode collapse, thereby favoring generator distributions with less mode collapse during the training process. Numerical experiments on benchmark datasets suggests that packing provides significant improvements in practice as well.more » « less
-
This paper addresses how to fairly compare ROCs of ad hoc (or data driven) detectors with tests derived from statistical models of digital media. We argue that the ways ROCs are typically drawn for each detector type correspond to different hypothesis testing problems with different optimality criteria, making the ROCs incomparable. To understand the problem and why it occurs, we model a source of natural images as a mixture of scene oracles and derive optimal detectors for the task of image steganalysis. Our goal is to guarantee that, when the data follows the statistical model adopted for the hypothesis test, the ROC of the optimal detector bounds the ROC of the ad hoc detector. While the results are applicable beyond the field of image steganalysis, we use this setup to point out possi- ble inconsistencies when comparing both types of detectors and explain guidelines for their proper comparison. Experiments on an artificial cover source with a known model with real stegano- graphic algorithms and deep learning detectors are used to confirm our claims.more » « less
An official website of the United States government

