skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Liu, Chao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose an intrinsic mechanism to understand the even-odd effect, namely, opposite signs of anomalous Hall resistance and different shapes of hysteresis loops for even and odd septuple layers (SLs), of MBE-grown MnBi2Te4 thin films with electron doping. The nonzero hysteresis loops in the anomalous Hall effect and magnetic circular dichroism for even-SLs MnBi2Te4 films originate from two different antiferromagnetic (AFM) configurations with different zeroth Landau level energies of surface states. The complex form of the anomalous Hall hysteresis loop can be understood from two magnetic transitions, a transition between two AFM states followed by a second transition to the ferromagnetic state. Our model also clarifies the relationship and distinction between axion parameter and magnetoelectric coefficient, and shows an even-odd oscillation behavior of magnetoelectric coefficients in MnBi2Te4 films. 
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  2. Abstract

    The presence of topological flat minibands in moiré materials provides an opportunity to explore the interplay between topology and correlation. In this work, we study moiré minibands in topological insulator films with two hybridized surface states under a moiré superlattice potential created by two-dimensional insulating materials. We show the lowest conduction (highest valence) Kramers’ pair of minibands can be$${{\mathbb{Z}}}_{2}$$Z2non-trivial when the minima (maxima) of moiré potential approximately form a hexagonal lattice with six-fold rotation symmetry. Coulomb interaction can drive the non-trivial Kramers’ minibands into the quantum anomalous Hall state when they are half-filled, which is further stabilized by applying external gate voltages to break inversion. We propose the monolayer Sb2on top of Sb2Te3films as a candidate based on first principles calculations. Our work demonstrates the topological insulator based moiré heterostructure as a potential platform for studying interacting topological phases.

     
    more » « less
  3. Abstract Nonlinear Hall effect (NLHE) is a new type of Hall effect with wide application prospects. Practical device applications require strong NLHE at room temperature (RT). However, previously reported NLHEs are all low-temperature phenomena except for the surface NLHE of TaIrTe 4 . Bulk RT NLHE is highly desired due to its ability to generate large photocurrent. Here, we show the spin-valley locked Dirac state in BaMnSb 2 can generate a strong bulk NLHE at RT. In the microscale devices, we observe the typical signature of an intrinsic NLHE, i.e. the transverse Hall voltage quadratically scales with the longitudinal current as the current is applied to the Berry curvature dipole direction. Furthermore, we also demonstrate our nonlinear Hall device’s functionality in wireless microwave detection and frequency doubling. These findings broaden the coupled spin and valley physics from 2D systems into a 3D system and lay a foundation for exploring bulk NLHE’s applications. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. A quantum anomalous Hall (QAH) insulator is a topological phase in which the interior is insulating but electrical current flows along the edges of the sample in either a clockwise or counterclockwise direction, as dictated by the spontaneous magnetization orientation. Such a chiral edge current eliminates any backscattering, giving rise to quantized Hall resistance and zero longitudinal resistance. Here we fabricate mesoscopic QAH sandwich Hall bar devices and succeed in switching the edge current chirality through thermally assisted spin–orbit torque (SOT). The well-quantized QAH states before and after SOT switching with opposite edge current chiralities are demonstrated through four- and three-terminal measurements. We show that the SOT responsible for magnetization switching can be generated by both surface and bulk carriers. Our results further our understanding of the interplay between magnetism and topological states and usher in an easy and instantaneous method to manipulate the QAH state. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  5. El Niño-Southern Oscillation (ENSO) sea surface temperature (SST) anomaly skewness encapsulates the nonlinear processes of strong ENSO events and affects future climate projections. Yet, its response to CO2 forcing remains not well understood. Here, we find ENSO skewness hysteresis in a large ensemble CO2 removal simulation. The positive SST skewness in the central-to-eastern tropical Pacific gradually weakens (most pronounced near the dateline) in response to increasing CO2, but weakens even further once CO2 is ramped down. Further analyses reveal that hysteresis of the Intertropical Convergence Zone migration leads to more active and farther eastward-located strong eastern Pacific El Niño events, thus decreasing central Pacific ENSO skewness by reducing the amplitude of the central Pacific positive SST anomalies and increasing the scaling effect of the eastern Pacific skewness denominator, i.e., ENSO intensity, respectively. The reduction of eastern Pacific El Niño maximum intensity, which is constrained by the SST zonal gradient of the projected background El Niño-like warming pattern, also contributes to a reduction of eastern Pacific SST skewness around the CO2 peak phase. This study highlights the divergent responses of different strong El Niño regimes in response to climate change. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  6. The interface between two different materials can show unexpected quantum phenomena. In this study, we used molecular beam epitaxy to synthesize heterostructures formed by stacking together two magnetic materials, a ferromagnetic topological insulator (TI) and an antiferromagnetic iron chalcogenide (FeTe). We observed emergent interface-induced superconductivity in these heterostructures and demonstrated the co-occurrence of superconductivity, ferromagnetism, and topological band structure in the magnetic TI layer—the three essential ingredients of chiral topological superconductivity (TSC). The unusual coexistence of ferromagnetism and superconductivity is accompanied by a high upper critical magnetic field that exceeds the Pauli paramagnetic limit for conventional superconductors at low temperatures. These magnetic TI/FeTe heterostructures with robust superconductivity and atomically sharp interfaces provide an ideal wafer-scale platform for the exploration of chiral TSC and Majorana physics. 
    more » « less
    Free, publicly-accessible full text available February 9, 2025
  7. Free, publicly-accessible full text available September 20, 2024
  8. El Niño–Southern Oscillation (ENSO) is the strongest interannual climate variability with far-reaching socioeconomic consequences. Many studies have investigated ENSO-projected changes under future greenhouse warming, but its responses to plausible mitigation behaviors remain unknown. We show that ENSO sea surface temperature (SST) variability and associated global teleconnection patterns exhibit strong hysteretic responses to carbon dioxide (CO2) reduction based on the 28-member ensemble simulations of the CESM1.2 model under an idealized CO2 ramp-up and ramp-down scenario. There is a substantial increase in the ensemble-averaged eastern Pacific SST anomaly variance during the ramp-down period compared to the ramp-up period. Such ENSO hysteresis is mainly attributed to the hysteretic response of the tropical Pacific Intertropical Convergence Zone meridional position to CO2 removal and is further supported by several selected single-member Coupled Model Intercomparison Project Phase 6 (CMIP6) model simulations. The presence of ENSO hysteresis leads to its amplified and prolonged impact in a warming climate, depending on the details of future mitigation pathways. 
    more » « less
    Free, publicly-accessible full text available August 4, 2024
  9. Abstract

    An axion insulator is a three-dimensional (3D) topological insulator (TI), in which the bulk maintains the time-reversal symmetry or inversion symmetry but the surface states are gapped by surface magnetization. The axion insulator state has been observed in molecular beam epitaxy (MBE)-grown magnetically doped TI sandwiches and exfoliated intrinsic magnetic TI MnBi2Te4flakes with an even number layer. All these samples have a thickness of ~ 10 nm, near the 2D-to-3D boundary. The coupling between the top and bottom surface states in thin samples may hinder the observation of quantized topological magnetoelectric response. Here, we employ MBE to synthesize magnetic TI sandwich heterostructures and find that the axion insulator state persists in a 3D sample with a thickness of ~ 106 nm. Our transport results show that the axion insulator state starts to emerge when the thickness of the middle undoped TI layer is greater than ~ 3 nm. The 3D hundred-nanometer-thick axion insulator provides a promising platform for the exploration of the topological magnetoelectric effect and other emergent magnetic topological states, such as the high-order TI phase.

     
    more » « less