skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Liu, Chung-Hao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report the use of fluorinated polymer zwitterions to build hybrid systems for efficient CO2electroreduction.

     
    more » « less
    Free, publicly-accessible full text available August 22, 2025
  2. We report a facile method to prepare polymer-grafted plasmonic metal nanoparticles (NPs) that exhibit pH-responsive surface-enhanced Raman scattering (SERS). The concept is based on the use of pH- responsive polymers, such as poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH), as multi- dentate ligands to wrap around the surface of NPs instead of forming polymer brushes. Upon changing the solvent quality, the grafted pH-responsive polymers would drive reversible aggregation of NPs, leading to a decreased interparticle distance. This creates numerous hot spots, resulting in a secondary enhancement of SERS as compared to the SERS from discrete NPs. For negatively charged PAA-grafted NPs, the SERS response at pH 2.5 showed a secondary enhancement of up to 104-fold as compared to the response for discrete NPs at pH 12. Similarly, positively charged PAH-grafted AuNPs showed an oppo- site response to pH. We demonstrated that enhanced SERS with thiol-containing and charged molecular probes was indeed from the pH-driven solubility change of polymer ligands. Our method is different from the conventional SERS sensors in the solid state. With pH-responsive polymer-grafted NPs, SERS can be performed in solution with high reproducibility and sensitivity but without the need for sample pre-con- centration. These findings could pave the way for innovative designs of polymer ligands for metal NPs where polymer ligands do not compromise interparticle plasmon coupling. 
    more » « less
    Free, publicly-accessible full text available January 3, 2025
  3. We report a generalized platform for synthesizing a polymer nanoweb with a high specific surface area via a bicellar template, composed of 1,2-dipalmitoyl phosphocholine (DPPC), 1,2-dihexanoyl phosphocholine (DHPC), and 1,2-dipalmitoyl phosphoglycerol (DPPG). The pristine bicelle (in the absence of monomer or polymer) yields a variety of well-defined structures, including disc, vesicle, and perforated lamella. The addition of styrene monomers in the mixture causes bicelles to transform into lamellae. Monomers are miscible with DPPC and DPPG initially, while polymerization drives polymers to the DHPC-rich domain, resulting in a polymer nanoweb supported by the outcomes of small angle neutron scattering, differential scanning calorimetry, and transmission electron microscopy. 
    more » « less
  4. We report the hydrophobicity-enhanced reactivity of Cu2+ions as an ester hydrolase.

     
    more » « less
  5. Hypothesis: A well-defined discoidal bicelle composed of three lipids, specifically zwitterionic long-chain 1,2 dipalmitoyl phosphocholine (DPPC) and short-chain 1,2 dihexanoyl phosphocholine (DHPC) doped with anionic 1,2 dipalmitoyl phosphoglycerol (DPPG) provides a generalized template for the synthesis of hydrophobic polymer nano-rings. The lipid molar ratio of DPPC/DHPC/DPPG is 0.71/0.25/0.04. The detailed investigation and discussion were based on styrene but tested on three other vinyl monomers. Experiments: The structure of nano-rings is identified through the detailed analysis of small angle X-ray/ neutron scattering (SAXS and SANS) data and transmission electron micrographs (TEM), supported by the differential scanning calorimetric (DSC) data before and after polymerization. The investigation covers samples with a styrene-to-lipid ratio ranged varied from 1:50 to 1:10. Findings: The styrene monomers are initially located at both the discoidal planar (long-chain lipid rich) and rim (short-chain lipid rich) regions. During polymerization, they migrate to the more fluid rim regionsection. The formation mechanism involves the interplay of hydrophobic interaction, mismatched miscibility of polystyrene between the ordered and disordered phases, and crystallinity of the long lipid acyl chains. This facile synthesis is proven applicable for several hydrophobic monomers. The welldefined nano-rings greatly enhance the interfacial area and have the potential to be the building blocks for functional materials, if monomers are incorporated with desirable functions, for future applications. 
    more » « less
  6. We report a new design of polymer-patched gold nanoparticles (AuNPs) with controllable interparticle interactions in terms of their direction and strength. Patchy AuNPs (pAuNPs) are prepared through hydrophobicity-driven surface dewetting under deficient ligand exchange conditions. Using the exposed surface on pAuNPs as seeds, a highly controllable growth of AuNPs is carried out via seed-mediated growth while retaining the size of polymer domains. As guided by ligands, these pAuNPs can self-assemble directionally in two ways along the exposed surface (head-to-head) or the polymer-patched surface of pAuNPs (tail-to-tail). Control of the surface asymmetry/coverage on pAuNPs provides an important tool in balancing interparticle interactions (attraction vs. repulsion) that further tunes assembled nanostructures as clusters and nanochains. The self-assembly pathway plays a key role in determining the interparticle distance and therefore plasmon coupling of pAuNPs. Our results demonstrate a new paradigm in the directional self-assembly of anisotropic building blocks for hierarchical nanomaterials with interesting optical properties. 
    more » « less
  7. null (Ed.)
    Antimicrobial pentatopic 2,2′:6′,2′′-terpyridines that form 3-D supramolecular hexagonal prisms with Cd 2+ through coordination driven self-assembly can be entrapped by lipid discoidal bicelles, composed of 1,2-dipalmitoyl- sn-glycero -3-phosphocholine, 1,2-dihexanoyl- sn-glycero -3-phosphocholine and 1,2-dipalmitoyl- sn-glycero -3-phospho-(1′-rac-glycerol) lipid, forming a well-defined nanocomplex. Structural characterization performed by very small angle neutron scattering, small angle X-ray scattering and transmission electron microscopy suggests that the hexagonal prisms are preferably located at the rim of bicellar discs with the hexagonal face in parallel with the bilayers, instead of face-to-face stacking. Such a configuration reduces the π−π interaction and consequently enhances the fluorescence emission. Since novel supramolecules were reported to have antibiotic functions, this study provides insight into the interactions of antimicrobial supermolecules with lipid membranes, leading to potential theranostic applications. 
    more » « less
  8. null (Ed.)
  9. Abstract

    Peptide nucleic acids (PNAs) are nucleic acid analogs with hybridization properties and enzymatic stability superior to that of DNA. In addition to gene targeting applications, PNAs have garnered significant attention as bio‐polymers due to the Watson–Crick‐based molecular recognition and flexibility of synthesis. Here, PNA amphiphiles are engineered using chemically modified gamma PNA (8 mer in length) containing hydrophilic diethylene glycol units at the gamma position and covalently conjugated lauric acid (C12) as a hydrophobic moiety. Gamma PNA (γ  PNA) amphiphiles self‐assemble into spherical vesicles. Further, nano‐assemblies (NA) are formulated using the amphiphilic γ  PNA as a polymer via ethanol injection‐based protocols. Comprehensive head‐on comparison of the physicochemical and cellular uptake properties of PNA derived self‐ and NA is performed. Small‐angle neutron and X‐ray scattering analysis reveal ellipsoidal morphology of γ  PNA NA that results in superior cellular delivery compate to the spherical self‐assembly. Next, the functional activities of γ  PNA self‐and NA in lymphoma cells via multiple endpoints, including gene expression, cell viability, and apoptosis‐based assays are compared. Overall, it is established that γ  PNA amphiphile is a functionally active bio‐polymer to formulate NA for a wide range of biomedical applications.

     
    more » « less