We report on spectroscopic measurements on the 4f76s28S7/2∘−4f7(8S∘)6s6p(1P∘)8P5/2,7/2transitions at 466.32 nm and 462.85 nm, respectively, in neutral europium-151 and europium-153. The center of gravity frequencies for the 151 and 153 isotopes for both transitions are reported for the first time using saturated absorption spectroscopy. For the 6s6p(1P∘)8P5/2state, the center of gravity frequencies were found to be 642,894,493.3(4) MHz and 642,891,693.3(9) MHz for the 151 and 153 isotopes, respectively. The hyperfine constants for the upper state were found to beA(151)=−157.01(3)MHz,B(151)=74.5(4)MHz andA(153)=−69.43(14)MHz,B(153)=191.0(26)MHz. These hyperfine values are all consistent with previously published results except forB(151) that has a small discrepancy. The isotope shift was found to be 2799.54(20) MHz, a small discrepancy with previously published results. For the 6s6p(1P∘)8P7/2state, the center of gravity frequencies were found to be 647,708,930.6(6) MHz and 647,705,958.4(26) MHz for the 151 and 153 isotopes, respectively. The hyperfine constants for the upper state were found to beA(151)=−218.66(4)MHz,B(151)=−293.4(8)MHz andA(153)=−97.15(13)MHz,B(153)=−750(3)MHz. These values are all consistent with previously published results except forA(151) that has a small discrepancy. The isotope shift was found to be 2972.8(5) MHz, a small discrepancy with previously measured results.
more »
« less
Hydrophobic pockets built in polymer micelles enhance the reactivity of Cu 2+ ions
We report the hydrophobicity-enhanced reactivity of Cu2+ions as an ester hydrolase.
more »
« less
- PAR ID:
- 10471589
- Publisher / Repository:
- RSC
- Date Published:
- Journal Name:
- Materials Chemistry Frontiers
- Volume:
- 7
- Issue:
- 10
- ISSN:
- 2052-1537
- Page Range / eLocation ID:
- 2038 to 2048
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The abundance and distribution of44Ti tells us about the nature of the core-collapse supernovae explosions. There is a need to understand the nuclear reaction network creating and destroying44Ti in order to use it as a probe for the explosive mechanism. The44Ti(α, p)47V reaction is a very important reaction and it controls the destruction of44Ti. Difficulties with direct measurements have led to an attempt to study this reaction indirectly. Here, the first step of the indirect study which is the identification of levels of the compound nucleus48Cr is presented. A 100-MeV proton beam was incident on a50Cr target. States in48Cr were populated in the50Cr(p, t)48Cr reaction. The tritons were momentum-analysed in the K600 Q2D magnetic spectrometer at iThemba LABS.more » « less
-
Abstract We calculate cross sections for fine-structure transitions of Ne+, Ar+, Ne2+, and Ar2+in collisions with atomic hydrogen by using quantum-mechanical methods. Relaxation rate coefficients are calculated for temperatures up to 10,000 K. The temperature-dependent critical densities for the relaxation of Ne+, Ar+, Ne2+, and Ar2+in collisions with H have been determined and compared to the critical densities for collisions with electrons. The present calculations will be useful for studies utilizing the infrared lines [Neii] 12.8, [Neiii] 15.6, [Neiii] 36.0, [Arii] 6.99, [Ariii] 8.99, and [Ariii] 21.8μm as diagnostics of, for example, planetary nebulae and star formation.more » « less
-
Mattoon, C.M.; Vogt, R.; Escher, J.; Thompson, I. (Ed.)The cross-section of the thermal neutron capture41Ar(n,γ)42Ar(t1/2=32.9 y) reaction was measured by irradiating a40Ar sample at the high-flux reactor of Institut Laue-Langevin (ILL) Grenoble, France. The signature of the two-neutron capture has been observed by measuring the growth curve and identifying the 1524.6 keV γ-lines of the shorter-lived42K(12.4 h) β−daughter of42Ar. Our preliminary value of the41Ar(n,γ)42Ar thermal cross section is 240(80) mb at 25.3 meV. For the first time, direct counting of42Ar was performed using the ultra-high sensitivity technique of noble gas accelerator mass spectrometry (NOGAMS) at Argonne National Laboratory, USA.more » « less
-
Abstract Multiplex imaging in the second near‐infrared window (NIR‐II, 1000–1700 nm) provides exciting opportunities for more precise understanding of biological processes and more accurate diagnosis of diseases by enabling real‐time acquisition of images with improved contrast and spatial resolution in deeper tissues. Today, the number of imaging agents suitable for this modality remains very scarce. In this work, we have synthesized and fully characterized, including theoretical calculations, a series of dimeric LnIII/GaIIImetallacrowns bearing RuIIpolypyridyl complexes,LnRu‐3(Ln=YIII, YbIII, NdIII, ErIII). Relaxed structures ofYRu‐3in the ground and the excited electronic states have been calculated using dispersion‐corrected density functional theory methods. Detailed photophysical studies ofLnRu‐3have demonstrated that characteristic emission signals of YbIII, NdIIIand ErIIIin the NIR‐II range can be sensitized upon excitation in the visible range through RuII‐centered metal‐to‐ligand charge transfer (MLCT) states. We have also showed that these NIR‐II signals are unambiguously detected in an imaging experiment using capillaries and biological tissue‐mimicking phantoms. This work opens unprecedented perspectives for NIR‐II multiplex imaging using LnIII‐based molecular compounds.more » « less
An official website of the United States government

