skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Fanxin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. Abstract Plasmonic nanostructures exhibit intriguing optical properties due to spectrally selective plasmon resonance and thus have broad applications, including biochemical sensing and photoelectric detections. However, excited plasmons are often strongly influenced by the substrates supporting the metallic nanostructures, which not only weakens the intrinsic plasmon coupling effect, but also results in a great reduction of optical near‐field enhancement. Here, a plasmonic nanostructure combining collapsible Au‐nanofingers with selective‐etching that enables Au to be suspended is demonstrated, thus avoiding the undesirable influence of the substrates on the local near‐field distribution and forming symmetric electromagnetic‐field enhancements at both the top and bottom surfaces. The polymer support of the Au‐nanofingers is selectively etched by oxygen plasma, while the Au‐cap retains its original size. After an ultrathin dielectric coating is applied on the Au‐nanofingers, suspended Au‐caps with extremely small dielectric gaps are formed via the collapse of neighboring Au‐nanofingers by exposing them to ethanol. These nanostructures can provide a surface‐enhanced Raman scattering (SERS) enhancement of up to ≈109, which is nearly twice that in the nonsuspended system. As a highly active SERS substrate, the label‐free detection of low‐concentration harmful plastic phthalates in a child's urine without any pretreatment is successfully demonstrated, which suggests that this method is suitable for medical prediagnosis. 
    more » « less
  4. Abstract Light beams carrying orbital angular momentum (OAM) in the form of optical vortices have attracted great interest due to their capability for providing a new dimension and approach to manipulate light–matter interactions. Recently, plasmonics has offered efficient ways to focus vortex beams beyond the diffraction limit. However, unlike in the visible and near‐infrared regime, it is still a big challenge to realize plasmonic vortices at far‐infrared and even longer wavelengths. An effective strategy to create deep‐subwavelength near‐field electromagnetic (EM) vortices operating in the low frequency region is proposed. Taking advantage of the asymmetric spatial distribution of EM field supported by a metallic comb‐shaped waveguide, plasmonic vortex modes that are strongly confined in a well‐designed deep‐subwavelength meta‐particle with desired topological charges can be excited. Such unique phenomena are confirmed by the microwave experiments. An equivalent physical model backed up by the numerical simulations is performed to reveal the underlying mechanism of the plasmonic vortex generation. This spoof‐plasmon assisted focusing of EM waves with OAM may find potentials for functional integrated elements and devices operating in the microwave, terahertz, and even far‐infrared regions. 
    more » « less