skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Guannan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With the increasing popularity of containerized applications, container registries have hosted millions of repositories that allow developers to store, manage, and share their software. Unfortunately, they have also become a hotbed for adversaries to spread malicious images to the public. In this paper, we present the first in-depth study on the vulnerability of container registries to typosquatting attacks, in which adversaries intentionally upload malicious images with an identification similar to that of a benign image so that users may accidentally download malicious images due to typos. We demonstrate that such typosquatting attacks could pose a serious security threat in both public and private registries as well as across multiple platforms. To shed light on the container registry typosquatting threat, we first conduct a measurement study and a 210-day proof-of-concept exploitation on public container registries, revealing that human users indeed make random typos and download unwanted container images. We also systematically investigate attack vectors on private registries and reveal that its naming space is open and could be easily exploited for launching a typosquatting attack. In addition, for a typosquatting attack across multiple platforms, we demonstrate that adversaries can easily self-host malicious registries or exploit existing container registries to manipulate repositories with similar identifications. Finally, we propose CRYSTAL, a lightweight extension to existing image management, which effectively defends against typosquatting attacks from both container users and registries. 
    more » « less
  2. Advancements in nanotechnology require the development of nanofabrication methods for a wide range of materials, length scales, and elemental distributions. Today’s nanofabrication methods are typically missing at least one demanded characteristic. Hence, a general method enabling versatile nanofabrication remains elusive. Here, we show that, when revealing and using the underlying mechanisms of thermomechanical nanomolding, a highly versatile nanofabrication toolbox is the result. Specifically, we reveal interface diffusion and dislocation slip as the controlling mechanisms and use their transition to control, combine, and predict the ability to fabricate general materials, material combinations, and length scales. Designing specific elemental distributions is based on the relative diffusivities, the transition temperature, and the distribution of the materials in the feedstock. The mechanistic origins of thermomechanical nanomolding and their homologous temperature-dependent transition suggest a versatile toolbox capable of combining many materials in nanostructures and potentially producing any material in moldable shapes on the nanoscale. 
    more » « less
  3. Abstract Traditional techniques to identify macromolecular targets for drugs utilize solely the information on a query drug and a putative target. Nonetheless, the mechanisms of action of many drugs depend not only on their binding affinity toward a single protein, but also on the signal transduction through cascades of molecular interactions leading to certain phenotypes. Although using protein-protein interaction networks and drug-perturbed gene expression profiles can facilitate system-level investigations of drug-target interactions, utilizing such large and heterogeneous data poses notable challenges. To improve the state-of-the-art in drug target identification, we developed GraphDTI, a robust machine learning framework integrating the molecular-level information on drugs, proteins, and binding sites with the system-level information on gene expression and protein-protein interactions. In order to properly evaluate the performance of GraphDTI, we compiled a high-quality benchmarking dataset and devised a new cluster-based cross-validation protocol. Encouragingly, GraphDTI not only yields an AUC of 0.996 against the validation dataset, but it also generalizes well to unseen data with an AUC of 0.939, significantly outperforming other predictors. Finally, selected examples of identified drugtarget interactions are validated against the biomedical literature. Numerous applications of GraphDTI include the investigation of drug polypharmacological effects, side effects through offtarget binding, and repositioning opportunities. 
    more » « less