skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Liu, Hongfu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2025
  2. Free, publicly-accessible full text available November 1, 2024
  3. Ensemble clustering generally integrates basic partitions into a consensus one through a graph partitioning method, which, however, has two limitations: 1) it neglects to reuse original features; 2) obtaining consensus partition with learnable graph representations is still under-explored. In this paper, we propose a novel Adversarial Graph Auto-Encoders (AGAE) model to incorporate ensemble clustering into a deep graph embedding process. Specifically, graph convolutional network is adopted as probabilistic encoder to jointly integrate the information from feature content and consensus graph, and a simple inner product layer is used as decoder to reconstruct graph with the encoded latent variables (i.e., embedding representations). Moreover, we develop an adversarial regularizer to guide the network training with an adaptive partition-dependent prior. Experiments on eight real-world datasets are presented to show the effectiveness of AGAE over several state-of-the-art deep embedding and ensemble clustering methods.

     
    more » « less