skip to main content


Search for: All records

Creators/Authors contains: "Liu, Huan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a simple yet effective solution to tackle the often-competing goals of fairness and utility in classification tasks. While fairness ensures that the model's predictions are unbiased and do not discriminate against any particular group or individual, utility focuses on maximizing the model's predictive performance. This work introduces the idea of leveraging aleatoric uncertainty (e.g., data ambiguity) to improve the fairness-utility trade-off. Our central hypothesis is that aleatoric uncertainty is a key factor for algorithmic fairness and samples with low aleatoric uncertainty are modeled more accurately and fairly than those with high aleatoric uncertainty. We then propose a principled model to improve fairness when aleatoric uncertainty is high and improve utility elsewhere. Our approach first intervenes in the data distribution to better decouple aleatoric uncertainty and epistemic uncertainty. It then introduces a fairness-utility bi-objective loss defined based on the estimated aleatoric uncertainty. Our approach is theoretically guaranteed to improve the fairness-utility trade-off. Experimental results on both tabular and image datasets show that the proposed approach outperforms state-of-the-art methods w.r.t. the fairness-utility trade-off and w.r.t. both group and individual fairness metrics. This work presents a fresh perspective on the trade-off between utility and algorithmic fairness and opens a key avenue for the potential of using prediction uncertainty in fair machine learning. 
    more » « less
    Free, publicly-accessible full text available October 21, 2024
  2. Free, publicly-accessible full text available October 21, 2024
  3. Free, publicly-accessible full text available September 16, 2024
  4. Free, publicly-accessible full text available August 4, 2024
  5. Few-shot node classification, which aims to predict labels for nodes on graphs with only limited labeled nodes as references, is of great significance in real-world graph mining tasks. Particularly, in this paper, we refer to the task of classifying nodes in classes with a few labeled nodes as the few-shot node classification problem. To tackle such a label shortage issue, existing works generally leverage the meta-learning framework, which utilizes a number of episodes to extract transferable knowledge from classes with abundant labeled nodes and generalizes the knowledge to other classes with limited labeled nodes. In essence, the primary aim of few-shot node classification is to learn node embeddings that are generalizable across different classes. To accomplish this, the GNN encoder must be able to distinguish node embeddings between different classes, while also aligning embeddings for nodes in the same class. Thus, in this work, we propose to consider both the intra-class and inter-class generalizability of the model. We create a novel contrastive meta-learning framework on graphs, named COSMIC, with two key designs. First, we propose to enhance the intra-class generalizability by involving a contrastive two-step optimization in each episode to explicitly align node embeddings in the same classes. Second, we strengthen the inter-class generalizability by generating hard node classes via a novel similarity-sensitive mix-up strategy. Extensive experiments on few-shot node classification datasets verify the superiority of our framework over state-of-the-art baselines. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  6. A recent surge of users migrating from Twitter to alternative platforms, such as Mastodon, raised questions regarding what migration patterns are, how different platforms impact user behaviors, and how migrated users settle in the migration process. In this study, we elaborate how we investigate these questions by collecting data over 10,000 users who migrated from Twitter to Mastodon within the first ten weeks following Elon Musk's acquisition of Twitter. Our research is structured in three primary steps. First, we develop algorithms to extract and analyze migration patters. Second, by leveraging behavioral analysis, we examine the distinct architectures of Twitter and Mastodon to learn how different platforms shape user behaviors on each platform. Last, we determine how particular behavioral factors influence users to stay on Mastodon. We share our findings of user migration, insights, and lessons learned from the user behavior study. 
    more » « less
    Free, publicly-accessible full text available August 11, 2024
  7. A recent surge of users migrating from Twitter to alternative platforms, such as Mastodon, raised questions regarding what migration patterns are, how different platforms impact user behaviors, and how migrated users settle in the migration process. In this study, we elaborate how we investigate these questions by collecting data over 10,000 users who migrated from Twitter to Mastodon within the first ten weeks following Elon Musk's acquisition of Twitter. Our research is structured in three primary steps. First, we develop algorithms to extract and analyze migration patters. Second, by leveraging behavioral analysis, we examine the distinct architectures of Twitter and Mastodon to learn how different platforms shape user behaviors on each platform. Last, we determine how particular behavioral factors influence users to stay on Mastodon. We share our findings of user migration, insights, and lessons learned from the user behavior study. 
    more » « less
    Free, publicly-accessible full text available August 11, 2024
  8. Free, publicly-accessible full text available March 17, 2024
  9. In college cybersecurity education, problem-based learning has been introduced to promote student agency in solving a complex problem. However, a dilemma of balancing the student agency persist and previous research has focused on students’ cognitive, metacognitive, and regulatory to enhance the efficacy of PBL. Given the importance of students’ self-awareness of their agency, this study suggests a concept of meta-agency as an essential learner characteristic that influences the effectiveness of student agency in PBL. Four dimensions of meta-agency, perceptions of productive struggle, expectation alignment between instructor and students, strategies for regulating agency, and familiarity with PBL tasks, were qualitatively explored with student interview data. Features of meta-agency and how students’ meta-agency level develop through cybersecurity PBL sessions were further investigated. 
    more » « less
    Free, publicly-accessible full text available April 18, 2024