skip to main content

This content will become publicly available on October 21, 2024

Title: Fairness through Aleatoric Uncertainty
We propose a simple yet effective solution to tackle the often-competing goals of fairness and utility in classification tasks. While fairness ensures that the model's predictions are unbiased and do not discriminate against any particular group or individual, utility focuses on maximizing the model's predictive performance. This work introduces the idea of leveraging aleatoric uncertainty (e.g., data ambiguity) to improve the fairness-utility trade-off. Our central hypothesis is that aleatoric uncertainty is a key factor for algorithmic fairness and samples with low aleatoric uncertainty are modeled more accurately and fairly than those with high aleatoric uncertainty. We then propose a principled model to improve fairness when aleatoric uncertainty is high and improve utility elsewhere. Our approach first intervenes in the data distribution to better decouple aleatoric uncertainty and epistemic uncertainty. It then introduces a fairness-utility bi-objective loss defined based on the estimated aleatoric uncertainty. Our approach is theoretically guaranteed to improve the fairness-utility trade-off. Experimental results on both tabular and image datasets show that the proposed approach outperforms state-of-the-art methods w.r.t. the fairness-utility trade-off and w.r.t. both group and individual fairness metrics. This work presents a fresh perspective on the trade-off between utility and algorithmic fairness and opens a key avenue for the potential of using prediction uncertainty in fair machine learning.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Publisher / Repository:
Date Published:
Page Range / eLocation ID:
2372 to 2381
Subject(s) / Keyword(s):
["fairness","uncertainty quantification","bayesian neural networks"]
Medium: X
Birmingham United Kingdom
Sponsoring Org:
National Science Foundation
More Like this
  1. Artificial intelligence, machine learning, and algorithmic techniques in general, provide two crucial abilities with the potential to improve decision-making in the context of allocation of scarce societal resources. They have the ability to flexibly and accurately model treatment response at the individual level, potentially allowing us to better match available resources to individuals. In addition, they have the ability to reason simultaneously about the effects of matching sets of scarce resources to populations of individuals. In this work, we leverage these abilities to study algorithmic allocation of scarce societal resources in the context of homelessness. In communities throughout the United States, there is constant demand for an array of homeless services intended to address different levels of need. Allocations of housing services must match households to appropriate services that continuously fluctuate in availability, while inefficiencies in allocation could “waste” scarce resources as households will remain in-need and re-enter the homeless system, increasing the overall demand for homeless services. This complex allocation problem introduces novel technical and ethical challenges. Using administrative data from a regional homeless system, we formulate the problem of “optimal” allocation of resources given data on households with need for homeless services. The optimization problem aims to allocate available resources such that predicted probabilities of household re-entry are minimized. The key element of this work is its use of a counterfactual prediction approach that predicts household probabilities of re-entry into homeless services if assigned to each service. Through these counterfactual predictions, we find that this approach has the potential to improve the efficiency of the homeless system by reducing re-entry, and, therefore, system-wide demand. However, efficiency comes with trade-offs - a significant fraction of households are assigned to services that increase probability of re-entry. To address this issue as well as the inherent fairness considerations present in any context where there are insufficient resources to meet demand, we discuss the efficiency, equity, and fairness issues that arise in our work and consider potential implications for homeless policies. 
    more » « less
  2. An accountable algorithmic transparency report (ATR) should ideally investigate (a) transparency of the underlying algorithm, and (b) fairness of the algorithmic decisions, and at the same time preserve data subjects’ privacy . However, a provably formal study of the impact to data subjects’ privacy caused by the utility of releasing an ATR (that investigates transparency and fairness), has yet to be addressed in the literature. The far-fetched benefit of such a study lies in the methodical characterization of privacy-utility trade-offs for release of ATRs in public, and their consequential application-specific impact on the dimensions of society, politics, and economics. In this paper, we first investigate and demonstrate potential privacy hazards brought on by the deployment of transparency and fairness measures in released ATRs. To preserve data subjects’ privacy, we then propose a linear-time optimal-privacy scheme , built upon standard linear fractional programming (LFP) theory, for announcing ATRs, subject to constraints controlling the tolerance of privacy perturbation on the utility of transparency schemes. Subsequently, we quantify the privacy-utility trade-offs induced by our scheme, and analyze the impact of privacy perturbation on fairness measures in ATRs. To the best of our knowledge, this is the first analytical work that simultaneously addresses trade-offs between the triad of privacy, utility, and fairness, applicable to algorithmic transparency reports. 
    more » « less
  3. We consider the problem of dividing limited resources to individuals arriving over T rounds. Each round has a random number of individuals arrive, and individuals can be characterized by their type (i.e., preferences over the different resources). A standard notion of fairness in this setting is that an allocation simultaneously satisfy envy-freeness and efficiency. The former is an individual guarantee, requiring that each agent prefers the agent’s own allocation over the allocation of any other; in contrast, efficiency is a global property, requiring that the allocations clear the available resources. For divisible resources, when the number of individuals of each type are known up front, the desiderata are simultaneously achievable for a large class of utility functions. However, in an online setting when the number of individuals of each type are only revealed round by round, no policy can guarantee these desiderata simultaneously, and hence, the best one can do is to try and allocate so as to approximately satisfy the two properties. We show that, in the online setting, the two desired properties (envy-freeness and efficiency) are in direct contention in that any algorithm achieving additive counterfactual envy-freeness up to a factor of L T necessarily suffers an efficiency loss of at least [Formula: see text]. We complement this uncertainty principle with a simple algorithm, Guarded-Hope, which allocates resources based on an adaptive threshold policy and is able to achieve any fairness–efficiency point on this frontier. Our results provide guarantees for fair online resource allocation with high probability for multiple resource and multiple type settings. In simulation results, our algorithm provides allocations close to the optimal fair solution in hindsight, motivating its use in practical applications as the algorithm is able to adapt to any desired fairness efficiency trade-off. Funding: This work was supported by the National Science Foundation [Grants ECCS-1847393, DMS-1839346, CCF-1948256, and CNS-1955997] and the Army Research Laboratory [Grant W911NF-17-1-0094]. Supplemental Material: The online appendix is available at . 
    more » « less
  4. The prevalence and importance of algorithmic two-sided marketplaces has drawn attention to the issue of fairness in such settings. Algorithmic decisions are used in assigning students to schools, users to advertisers, and applicants to job interviews. These decisions should heed the preferences of individuals, and simultaneously be fair with respect to their merits (synonymous with fit, future performance, or need). Merits conditioned on observable features are always uncertain, a fact that is exacerbated by the widespread use of machine learning algorithms to infer merit from the observables. As our key contribution, we carefully axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits; indeed, it simultaneously recognizes uncertainty as the primary potential cause of unfairness and an approach to address it. We design a linear programming framework to find fair utility-maximizing distributions over allocations, and we show that the linear program is robust to perturbations in the estimated parameters of the uncertain merit distributions, a key property in combining the approach with machine learning techniques. 
    more » « less
  5. Recent studies indicate that deep neural networks (DNNs) are prone to show discrimination towards certain demographic groups. We observe that algorithmic discrimination can be explained by the high reliance of the models on fairness sensitive features. Motivated by this observation, we propose to achieve fairness by suppressing the DNN models from capturing the spurious correlation between those fairness sensitive features with the underlying task. Specifically, we firstly train a bias-only teacher model which is explicitly encouraged to maximally employ fairness sensitive features for prediction. The teacher model then counter-teaches a debiased student model so that the interpretation of the student model is orthogonal to the interpretation of the teacher model. The key idea is that since the teacher model relies explicitly on fairness sensitive features for prediction, the orthogonal interpretation loss enforces the student network to reduce its reliance on sensitive features and instead capture more task relevant features for prediction. Experimental analysis indicates that our framework substantially reduces the model's attention on fairness sensitive features. Experimental results on four datasets further validate that our framework has consistently improved the fairness with respect to three group fairness metrics, with a comparable or even better accuracy. 
    more » « less