skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Title: Fairness through Aleatoric Uncertainty
We propose a simple yet effective solution to tackle the often-competing goals of fairness and utility in classification tasks. While fairness ensures that the model's predictions are unbiased and do not discriminate against any particular group or individual, utility focuses on maximizing the model's predictive performance. This work introduces the idea of leveraging aleatoric uncertainty (e.g., data ambiguity) to improve the fairness-utility trade-off. Our central hypothesis is that aleatoric uncertainty is a key factor for algorithmic fairness and samples with low aleatoric uncertainty are modeled more accurately and fairly than those with high aleatoric uncertainty. We then propose a principled model to improve fairness when aleatoric uncertainty is high and improve utility elsewhere. Our approach first intervenes in the data distribution to better decouple aleatoric uncertainty and epistemic uncertainty. It then introduces a fairness-utility bi-objective loss defined based on the estimated aleatoric uncertainty. Our approach is theoretically guaranteed to improve the fairness-utility trade-off. Experimental results on both tabular and image datasets show that the proposed approach outperforms state-of-the-art methods w.r.t. the fairness-utility trade-off and w.r.t. both group and individual fairness metrics. This work presents a fresh perspective on the trade-off between utility and algorithmic fairness and opens a key avenue for the potential of using prediction uncertainty in fair machine learning.  more » « less
Award ID(s):
2227488
PAR ID:
10474545
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400701245
Page Range / eLocation ID:
2372 to 2381
Subject(s) / Keyword(s):
fairness uncertainty quantification bayesian neural networks
Format(s):
Medium: X
Location:
Birmingham United Kingdom
Sponsoring Org:
National Science Foundation
More Like this
  1. An accountable algorithmic transparency report (ATR) should ideally investigate (a) transparency of the underlying algorithm, and (b) fairness of the algorithmic decisions, and at the same time preserve data subjects’ privacy . However, a provably formal study of the impact to data subjects’ privacy caused by the utility of releasing an ATR (that investigates transparency and fairness), has yet to be addressed in the literature. The far-fetched benefit of such a study lies in the methodical characterization of privacy-utility trade-offs for release of ATRs in public, and their consequential application-specific impact on the dimensions of society, politics, and economics. In this paper, we first investigate and demonstrate potential privacy hazards brought on by the deployment of transparency and fairness measures in released ATRs. To preserve data subjects’ privacy, we then propose a linear-time optimal-privacy scheme , built upon standard linear fractional programming (LFP) theory, for announcing ATRs, subject to constraints controlling the tolerance of privacy perturbation on the utility of transparency schemes. Subsequently, we quantify the privacy-utility trade-offs induced by our scheme, and analyze the impact of privacy perturbation on fairness measures in ATRs. To the best of our knowledge, this is the first analytical work that simultaneously addresses trade-offs between the triad of privacy, utility, and fairness, applicable to algorithmic transparency reports. 
    more » « less
  2. The prevalence and importance of algorithmic two-sided marketplaces has drawn attention to the issue of fairness in such settings. Algorithmic decisions are used in assigning students to schools, users to advertisers, and applicants to job interviews. These decisions should heed the preferences of individuals, and simultaneously be fair with respect to their merits (synonymous with fit, future performance, or need). Merits conditioned on observable features are always uncertain, a fact that is exacerbated by the widespread use of machine learning algorithms to infer merit from the observables. As our key contribution, we carefully axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits; indeed, it simultaneously recognizes uncertainty as the primary potential cause of unfairness and an approach to address it. We design a linear programming framework to find fair utility-maximizing distributions over allocations, and we show that the linear program is robust to perturbations in the estimated parameters of the uncertain merit distributions, a key property in combining the approach with machine learning techniques. 
    more » « less
  3. The prevalence and importance of algorithmic two-sided marketplaces has drawn attention to the issue of fairness in such settings. Algorithmic decisions are used in assigning students to schools, users to advertisers, and applicants to job interviews. These decisions should heed the preferences of individuals, and simultaneously be fair with respect to their merits (synonymous with fit, future performance, or need). Merits conditioned on observable features are always uncertain, a fact that is exacerbated by the widespread use of machine learning algorithms to infer merit from the observables. As our key contribution, we carefully axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits; indeed, it simultaneously recognizes uncertainty as the primary potential cause of unfairness and an approach to address it. We design a linear programming framework to find fair utility-maximizing distributions over allocations, and we show that the linear program is robust to perturbations in the estimated parameters of the uncertain merit distributions, a key property in combining the approach with machine learning techniques. 
    more » « less
  4. Recent studies indicate that deep neural networks (DNNs) are prone to show discrimination towards certain demographic groups. We observe that algorithmic discrimination can be explained by the high reliance of the models on fairness sensitive features. Motivated by this observation, we propose to achieve fairness by suppressing the DNN models from capturing the spurious correlation between those fairness sensitive features with the underlying task. Specifically, we firstly train a bias-only teacher model which is explicitly encouraged to maximally employ fairness sensitive features for prediction. The teacher model then counter-teaches a debiased student model so that the interpretation of the student model is orthogonal to the interpretation of the teacher model. The key idea is that since the teacher model relies explicitly on fairness sensitive features for prediction, the orthogonal interpretation loss enforces the student network to reduce its reliance on sensitive features and instead capture more task relevant features for prediction. Experimental analysis indicates that our framework substantially reduces the model's attention on fairness sensitive features. Experimental results on four datasets further validate that our framework has consistently improved the fairness with respect to three group fairness metrics, with a comparable or even better accuracy. 
    more » « less
  5. Graphs are widely found in social network analysis and e-commerce, where Graph Neural Networks (GNNs) are the state-of the-art model. GNNs can be biased due to sensitive attributes and network topology. With existing work that learns a fair node representation or adjacency matrix, achieving a strong guarantee of group fairness while preserving prediction accuracy is still challenging, with the fairness-accuracy trade-off remaining obscure to human decision-makers. We first define and analyze a novel upper bound of group fairness to optimize the adjacency matrix for fairness without significantly h arming prediction accuracy. To understand the nuance of fairness-accuracy tradeoff, we further propose macroscopic and microscopic explanation methods to reveal the trade-offs and the space that one can exploit. The macroscopic explanation method is based on stratified sampling and linear programming to deterministically explain the dynamics of the group fairness and prediction accuracy. Driving down to the microscopic level, we propose a path-based explanation that reveals how network topology leads to the tradeoff. On seven graph datasets, we demonstrate the novel upper bound can achieve more efficient fairness-accuracy trade-offs and the intuitiveness of the explanation methods can clearly pinpoint where the trade-off is improved. 
    more » « less