Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Sodium-ion batteries (SIBs) is a promising technology for next-generation energy storage. However, their performance is limited at low temperatures due to the inferior bulk and interfacial resistance of current electrolytes. Here we present a systematic study to evaluate carboxylate ester-based electrolytes for SIB applications, due to their favorable properties (i.e., low melting point, low viscosity and high dielectric constant). The effects of salt, concentration and solvent molecular structure were systematically examined and compared with those of carbonate-based electrolytes. By combining electrochemical tests with spectroscopic characterization, the performance of selective carboxylate ester-based electrolytes in hard carbon/Na and Na3V2(PO4)3/Na half-cells was evaluated. We found carboxylates enable high electrolyte conductivities, especially at low temperatures. However, carboxylates alone are inadequate to form a stable interphase due to their high reactivity, which can be addressed by choosing a suitable anion and facilitating anion-rich Na+ solvation by increasing salt concentration. Fundamental knowledge on the chemistry–property–performance correlation of this new family of electrolytes was obtained, and their benefits and pitfalls were thoroughly discussed. These discoveries and knowledge will shed light on the potential of carboxylate ester-based electrolytes and provide the foundation for further electrolyte engineering.more » « lessFree, publicly-accessible full text available May 16, 2025
-
Free, publicly-accessible full text available April 10, 2025
-
Abstract Interfacial thermal resistance plays a crucial role in efficient heat dissipation in modern electronic devices. It is critical to understand the interfacial thermal transport from both experiments and underlying physics. This review is focused on the transient opto-thermal Raman-based techniques for measuring the interfacial thermal resistance between 2D materials and substrate. This transient idea eliminates the use of laser absorption and absolute temperature rise data, therefore provides some of the highest level measurement accuracy and physics understanding. Physical concepts and perspectives are given for the time-domain differential Raman (TD-Raman), frequency-resolved Raman (FR-Raman), energy transport state-resolved Raman (ET-Raman), frequency domain ET-Raman (FET-Raman), as well as laser flash Raman and dual-wavelength laser flash Raman techniques. The thermal nonequilibrium between optical and acoustic phonons, as well as hot carrier diffusion must be considered for extremely small domain characterization of interfacial thermal resistance. To have a better understanding of phonon transport across material interfaces, we introduce a new concept termed effective interface energy transmission velocity. It is very striking that many reported interfaces have an almost constant energy transmission velocity over a wide temperature range. This physics consideration is inspired by the thermal reffusivity theory, which is effective for analyzing structure-phonon scattering. We expect the effective interface energy transmission velocity to give an intrinsic picture of the transmission of energy carriers, unaltered by the influence of their capacity to carry heat.more » « less
-
ConEC: Earnings Call Dataset with Real-world Contexts for Benchmarking Contextual Speech RecognitionCalzolari, Nicoletta; Kan, Min-Yen; Hoste, Veronique; Lenci, Alessandro; Sakti, Sakriani; Xue, Nianwen (Ed.)Knowing the particular context associated with a conversation can help improving the performance of an automatic speech recognition (ASR) system. For example, if we are provided with a list of in-context words or phrases — such as the speaker’s contacts or recent song playlists — during inference, we can bias the recognition process towards this list. There are many works addressing contextual ASR; however, there is few publicly available real benchmark for evaluation, making it difficult to compare different solutions. To this end, we provide a corpus (“ConEC”) and baselines to evaluate contextual ASR approaches, grounded on real-world applications. The ConEC corpus is based on public-domain earnings calls (ECs) and associated supplementary materials, such as presentation slides, earnings news release as well as a list of meeting participants’ names and affiliations. We demonstrate that such real contexts are noisier than artificially synthesized contexts that contain the ground truth, yet they still make great room for future improvement of contextual ASR technology.more » « lessFree, publicly-accessible full text available May 22, 2025
-
ConEC: Earnings Call Dataset with Real-world Contexts for Benchmarking Contextual Speech RecognitionKnowing the particular context associated with a conversation can help improving the performance of an automatic speech recognition (ASR) system. For example, if we are provided with a list of in-context words or phrases — such as the speaker’s contacts or recent song playlists — during inference, we can bias the recognition process towards this list. There are many works addressing contextual ASR; however, there is few publicly available real benchmark for evaluation, making it difficult to compare different solutions. To this end, we provide a corpus (“ConEC”) and baselines to evaluate contextual ASR approaches, grounded on real-world applications. The ConEC corpus is based on public-domain earnings calls (ECs) and associated supplementary materials, such as presentation slides, earnings news release as well as a list of meeting participants’ names and affiliations. We demonstrate that such real contexts are noisier than artificially synthesized contexts that contain the ground truth, yet they still make great room for future improvement of contextual ASR technologymore » « lessFree, publicly-accessible full text available May 20, 2025
-
An earthquake is a seismic event resulting from a sudden release of energy in the lithosphere, which produces waves that can propagate through the atmosphere into the ionosphere, causing ionospheric disturbances, and excites an additional electric field in the lower ionosphere. Two large-scale traveling ionospheric disturbances (LSTIDs) at daytime Turkey longitudes were found, with phase speeds of 534 and 305 m/s, respectively, after the second strong earthquake at 10:24 UT on 6 February 2023. During strong earthquakes, the equatorial ionospheric currents including the E-region equatorial electrojet (EEJ) and F-region ionospheric radial current (IRC) might be perturbed. At the Tatuoca station in Brazil, we observed a stronger-than-usual horizontal magnetic field associated with the EEJ, with a magnitude of ~100 nT. EEJ perturbations are mainly controlled by neutral winds, especially zonal winds. In the equatorial F-region, a wave perturbation of the IRC was caused by a balance of the electric field generated by the zonal winds at ~15° MLat, the F-region local winds driven by atmospheric resonance, and the additional polarization electric field. Our findings better the understanding of the complex interplay between seismic events and ionospheric current disturbances.more » « less
-
Much of the large quantity of plastics produced annually is discharged into the environment, where it degrades into tiny plastic debris (e.g., macro-, micro-, and nano-plastics). There are increasing concerns about the adverse effects of these plastics. In particular, nanoplastics are more prone to interacting with surrounding substances, because of their substantially larger surface areas and consequent increased exposure of surface functional groups. However, the oxidative roles of nanoplastics in inducing redox reactions with heavy or transition metals remain poorly understood. In this study, we investigated how Mn2+ was oxidized by the photolysis of polystyrene (PS)-based nanoplastics. We found that peroxyl (ROO•) and superoxide radicals (O2•−) were generated during the photolysis of PS-based nanoplastics, and they were primarily responsible for Mn oxidation. In addition, different plastic particle sizes and functional groups influenced the formation of radicals and the growth and mineral phases of Mn oxide solids. This study provides insights into the occurrence and diversity of Mn oxides in nature. These new findings also enhance our understanding of the oxidative roles of nanoplastics in generating reactive oxygen species (ROS) and how this may apply to the oxidation of other redox-active metal ions and essential chemicals, which could disrupt ecosystems and affect elemental cycling. Moreover, the production of ROS from nanoplastics in the presence of light endangers marine life and human health, and also potentially affects the mobility of the nanoplastics in the environment via redox reactions, which in turn might negatively impact their environmental remediation.more » « less
-
We utilize a coupled economy–agroecology–hydrology modeling framework to capture the cascading impacts of climate change mitigation policy on agriculture and the resulting water quality cobenefits. We analyze a policy that assigns a range of United States government’s social cost of carbon estimates ($51, $76, and $152/ton of CO2-equivalents) to fossil fuel–based CO2emissions. This policy raises energy costs and, importantly for agriculture, boosts the price of nitrogen fertilizer production. At the highest carbon price, US carbon emissions are reduced by about 50%, and nitrogen fertilizer prices rise by about 90%, leading to an approximate 15% reduction in fertilizer applications for corn production across the Mississippi River Basin. Corn and soybean production declines by about 7%, increasing crop prices by 6%, while nitrate leaching declines by about 10%. Simulated nitrate export to the Gulf of Mexico decreases by 8%, ultimately shrinking the average midsummer area of the Gulf of Mexico hypoxic area by 3% and hypoxic volume by 4%. We also consider the additional benefits of restored wetlands to mitigate nitrogen loading to reduce hypoxia in the Gulf of Mexico and find a targeted wetland restoration scenario approximately doubles the effect of a low to moderate social cost of carbon. Wetland restoration alone exhibited spillover effects that increased nitrate leaching in other parts of the basin which were mitigated with the inclusion of the carbon policy. We conclude that a national climate policy aimed at reducing greenhouse gas emissions in the United States would have important water quality cobenefits.more » « less
-
Abstract This study investigates the global distribution of electron temperature enhancement observed by Defense Meteorological Satellite Program F16 satellite and its dependence on the season and solar activity for the solar maximum (2014) and minimum (2018) years during geomagnetic quiet times (maximum per day ap <10). Electron temperature enhancements occurred mainly over the North American‐Atlantic (260°–360°E) and Eurasia (0°–160°E) (Southern Oceania (80°–280°E)) sector in the Northern (Southern) Hemisphere and are prominent in the winter hemispheres and solar maximum year. They have obvious longitude characteristics. Interestingly, they could extend to geomagnetic equatorial regions in the North American‐Atlantic sector from high to low latitudes in the December Solstice, further crossed the magnetic equator, and merged into the Southern Hemisphere in 2014, where the maximum temperature reached ∼3500 K. Our analysis indicates that low‐energy electrons (<100 eV) associated with photoelectron from the conjugate sunlit hemisphere, can contribute to these enhancements. Furthermore, the local geomagnetic declination, magnetic equator position, and terminator position at magnetic conjugate points together can impact the global distribution of photoelectrons of different energies and therefore the electron temperature enhancement distribution. Other processes (including local electron density variation) may play certain roles as well.more » « less