skip to main content


Search for: All records

Creators/Authors contains: "Liu, Jingya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Early intervention in kidney cancer helps to improve survival rates. Abdominal computed tomography (CT) is often used to diagnose renal masses. In clinical practice, the manual segmentation and quantification of organs and tumors are expensive and time-consuming. Artificial intelligence (AI) has shown a significant advantage in assisting cancer diagnosis. To reduce the workload of manual segmentation and avoid unnecessary biopsies or surgeries, in this paper, we propose a novel end-to-end AI-driven automatic kidney and renal mass diagnosis framework to identify the abnormal areas of the kidney and diagnose the histological subtypes of renal cell carcinoma (RCC). The proposed framework first segments the kidney and renal mass regions by a 3D deep learning architecture (Res-UNet), followed by a dual-path classification network utilizing local and global features for the subtype prediction of the most common RCCs: clear cell, chromophobe, oncocytoma, papillary, and other RCC subtypes. To improve the robustness of the proposed framework on the dataset collected from various institutions, a weakly supervised learning schema is proposed to leverage the domain gap between various vendors via very few CT slice annotations. Our proposed diagnosis system can accurately segment the kidney and renal mass regions and predict tumor subtypes, outperforming existing methods on the KiTs19 dataset. Furthermore, cross-dataset validation results demonstrate the robustness of datasets collected from different institutions trained via the weakly supervised learning schema. 
    more » « less
  2. Medical imaging data annotation is expensive and time-consuming. Supervised deep learning approaches may encounter overfitting if trained with limited medical data, and further affect the robustness of computer-aided diagnosis (CAD) on CT scans collected by various scanner vendors. Additionally, the high false-positive rate in automatic lung nodule detection methods prevents their applications in daily clinical routine diagnosis. To tackle these issues, we first introduce a novel self-learning schema to train a pre-trained model by learning rich feature representatives from large-scale unlabeled data without extra annotation, which guarantees a consistent detection performance over novel datasets. Then, a 3D feature pyramid network ( 3DFPN ) is proposed for high-sensitivity nodule detection by extracting multi-scale features, where the weights of the backbone network are initialized by the pre-trained model and then fine-tuned in a supervised manner. Further, a High Sensitivity and Specificity ( HS 2 ) network is proposed to reduce false positives by tracking the appearance changes among continuous CT slices on Location History Images (LHI) for the detected nodule candidates. The proposed method’s performance and robustness are evaluated on several publicly available datasets, including LUNA16, SPIE-AAPM, LungTIME, and HMS. Our proposed detector achieves the state-of-the-art result of 90.6 % sensitivity at 1 / 8 false positive per scan on the LUNA16 dataset. The proposed framework’s generalizability has been evaluated on three additional datasets (i.e., SPIE-AAPM, LungTIME, and HMS) captured by different types of CT scanners. 
    more » « less