Medical imaging data annotation is expensive and time-consuming. Supervised deep learning approaches may encounter overfitting if trained with limited medical data, and further affect the robustness of computer-aided diagnosis (CAD) on CT scans collected by various scanner vendors. Additionally, the high false-positive rate in automatic lung nodule detection methods prevents their applications in daily clinical routine diagnosis. To tackle these issues, we first introduce a novel self-learning schema to train a pre-trained model by learning rich feature representatives from large-scale unlabeled data without extra annotation, which guarantees a consistent detection performance over novel datasets. Then, a 3D feature pyramid network ( 3DFPN ) is proposed for high-sensitivity nodule detection by extracting multi-scale features, where the weights of the backbone network are initialized by the pre-trained model and then fine-tuned in a supervised manner. Further, a High Sensitivity and Specificity ( HS 2 ) network is proposed to reduce false positives by tracking the appearance changes among continuous CT slices on Location History Images (LHI) for the detected nodule candidates. The proposed method’s performance and robustness are evaluated on several publicly available datasets, including LUNA16, SPIE-AAPM, LungTIME, and HMS. Our proposed detector achieves the state-of-the-art result of 90.6 % sensitivity at 1 / 8 false positive per scan on the LUNA16 dataset. The proposed framework’s generalizability has been evaluated on three additional datasets (i.e., SPIE-AAPM, LungTIME, and HMS) captured by different types of CT scanners. 
                        more » 
                        « less   
                    
                            
                            AI-Driven Robust Kidney and Renal Mass Segmentation and Classification on 3D CT Images
                        
                    
    
            Early intervention in kidney cancer helps to improve survival rates. Abdominal computed tomography (CT) is often used to diagnose renal masses. In clinical practice, the manual segmentation and quantification of organs and tumors are expensive and time-consuming. Artificial intelligence (AI) has shown a significant advantage in assisting cancer diagnosis. To reduce the workload of manual segmentation and avoid unnecessary biopsies or surgeries, in this paper, we propose a novel end-to-end AI-driven automatic kidney and renal mass diagnosis framework to identify the abnormal areas of the kidney and diagnose the histological subtypes of renal cell carcinoma (RCC). The proposed framework first segments the kidney and renal mass regions by a 3D deep learning architecture (Res-UNet), followed by a dual-path classification network utilizing local and global features for the subtype prediction of the most common RCCs: clear cell, chromophobe, oncocytoma, papillary, and other RCC subtypes. To improve the robustness of the proposed framework on the dataset collected from various institutions, a weakly supervised learning schema is proposed to leverage the domain gap between various vendors via very few CT slice annotations. Our proposed diagnosis system can accurately segment the kidney and renal mass regions and predict tumor subtypes, outperforming existing methods on the KiTs19 dataset. Furthermore, cross-dataset validation results demonstrate the robustness of datasets collected from different institutions trained via the weakly supervised learning schema. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2041307
- PAR ID:
- 10428802
- Date Published:
- Journal Name:
- Bioengineering
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2306-5354
- Page Range / eLocation ID:
- 116
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We introduce an active, semisupervised algorithm that utilizes Bayesian experimental design to address the shortage of annotated images required to train and validate Artificial Intelligence (AI) models for lung cancer screening with computed tomography (CT) scans. Our approach incorporates active learning with semisupervised expectation maximization to emulate the human in the loop for additional ground truth labels to train, evaluate, and update the neural network models. Bayesian experimental design is used to intelligently identify which unlabeled samples need ground truth labels to enhance the model’s performance. We evaluate the proposed Active Semi-supervised Expectation Maximization for Computer aided diagnosis (CAD) tasks (ASEM-CAD) using three public CT scans datasets: the National Lung Screening Trial (NLST), the Lung Image Database Consortium (LIDC), and Kaggle Data Science Bowl 2017 for lung cancer classification using CT scans. ASEM-CAD can accurately classify suspicious lung nodules and lung cancer cases with an area under the curve (AUC) of 0.94 (Kaggle), 0.95 (NLST), and 0.88 (LIDC) with significantly fewer labeled images compared to a fully supervised model. This study addresses one of the significant challenges in early lung cancer screenings using low-dose computed tomography (LDCT) scans and is a valuable contribution towards the development and validation of deep learning algorithms for lung cancer screening and other diagnostic radiology examinations.more » « less
- 
            Hemanth, Jude (Ed.)Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Imaging tests such as chest X-ray (CXR) and computed tomography (CT) can provide useful information to clinical staff for facilitating a diagnosis of COVID-19 in a more efficient and comprehensive manner. As a breakthrough of artificial intelligence (AI), deep learning has been applied to perform COVID-19 infection region segmentation and disease classification by analyzing CXR and CT data. However, prediction uncertainty of deep learning models for these tasks, which is very important to safety-critical applications like medical image processing, has not been comprehensively investigated. In this work, we propose a novel ensemble deep learning model through integrating bagging deep learning and model calibration to not only enhance segmentation performance, but also reduce prediction uncertainty. The proposed method has been validated on a large dataset that is associated with CXR image segmentation. Experimental results demonstrate that the proposed method can improve the segmentation performance, as well as decrease prediction uncertainty.more » « less
- 
            This paper presents a semi-supervised framework for multi-level description learning aiming for robust and accurate camera relocalization across large perception variations. Our proposed network, namely DLSSNet, simultaneously learns weakly-supervised semantic segmentation and local feature description in the hierarchy. Therefore, the augmented descriptors, trained in an end-to-end manner, provide a more stable high-level representation for local feature dis-ambiguity. To facilitate end-to-end semantic description learning, the descriptor segmentation module is proposed to jointly learn semantic descriptors and cluster centers using standard semantic segmentation loss. We show that our model can be easily fine-tuned for domain-specific usage without any further semantic annotations, instead, requiring only 2D-2D pixel correspondences. The learned descriptors, trained with our proposed pipeline, can boost the cross-season localization performance against other state-of-the-arts.more » « less
- 
            Purpose: Limited studies exploring concrete methods or approaches to tackle and enhance model fairness in the radiology domain. Our proposed AI model utilizes supervised contrastive learning to minimize bias in CXR diagnosis. Materials and Methods: In this retrospective study, we evaluated our proposed method on two datasets: the Medical Imaging and Data Resource Center (MIDRC) dataset with 77,887 CXR images from 27,796 patients collected as of April 20, 2023 for COVID-19 diagnosis, and the NIH Chest X-ray (NIH-CXR) dataset with 112,120 CXR images from 30,805 patients collected between 1992 and 2015. In the NIH-CXR dataset, thoracic abnormalities include atelectasis, cardiomegaly, effusion, infiltration, mass, nodule, pneumonia, pneumothorax, consolidation, edema, emphysema, fibrosis, pleural thickening, or hernia. Our proposed method utilizes supervised contrastive learning with carefully selected positive and negative samples to generate fair image embeddings, which are fine-tuned for subsequent tasks to reduce bias in chest X-ray (CXR) diagnosis. We evaluated the methods using the marginal AUC difference (δ mAUC). Results: The proposed model showed a significant decrease in bias across all subgroups when compared to the baseline models, as evidenced by a paired T-test (p<0.0001). The δ mAUC obtained by our method were 0.0116 (95\% CI, 0.0110-0.0123), 0.2102 (95% CI, 0.2087-0.2118), and 0.1000 (95\% CI, 0.0988-0.1011) for sex, race, and age on MIDRC, and 0.0090 (95\% CI, 0.0082-0.0097) for sex and 0.0512 (95% CI, 0.0512-0.0532) for age on NIH-CXR, respectively. Conclusion: Employing supervised contrastive learning can mitigate bias in CXR diagnosis, addressing concerns of fairness and reliability in deep learning-based diagnostic methods.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    