skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Jiping"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract An ice-free Arctic summer is a landmark of global change and has the far-reaching climate, environmental, and economic impacts. However, the Coupled Model Intercomparison Project Phase 6 models’ projected occurrence remains notoriously uncertain. Finding emergent constraints to reduce the projection uncertainties has been a foremost challenge. To establish a physical basis for the constraints, we first demonstrate, with numerical experiments, that the observed trend of Arctic ice loss is primarily driven by the Arctic near-surface air temperature. Thus, two constraints are proposed: the Arctic sea ice sensitivity that measures Arctic sea ice response to the local warming, and the Arctic amplification sensitivity that assesses how well the model responds to anthropogenic forcing and allocates heat to the Arctic region. The two constraints are complementary and nearly scenario-independent. The model-projected first Arctic ice-free year significantly depends on the model’s two climate sensitivities. Thus, the first Arctic ice-free year can be predicted by the linear combination of the two Arctic sensitivity measures. Based on model-simulated sensitivity skills, 20 CMIP models are divided into two equal number groups. The ten realistic-sensitivity models project, with a likelihood of 80%, the ice-free Arctic will occur by additional 0.8 °C global warming from 2019 level or before 2040 under the SSP2-4.5 (medium emission) scenario. The ten realistic-sensitivity models’ spread is reduced by about 70% compared to the ten underestimate-sensitivity models’ large spread. The strategy for creating physics-based emergent constraints through numerical experiments may be instrumental for broad application to other fields for advancing robust projection and understanding uncertainty sources. 
    more » « less
  2. null (Ed.)
    The death of George Floyd has brought a new wave of 2020 Black Lives Matter (BLM) protests into U.S. cities. Protests happened in a few cities accompanied by reports of violence over the first few days. The protests appear to be related to rising crime. This study uses newly collected crime data in 50 U.S. cities/counties to explore the spatiotemporal crime changes under BLM protests and to estimate the driving factors of burglary induced by the BLM protest. Four spatial and statistic models were used, including the Average Nearest Neighbor (ANN), Hotspot Analysis, Least Absolute Shrinkage, and Selection Operator (LASSO), and Binary Logistic Regression. The results show that (1) crime, especially burglary, has risen sharply in a few cities/counties, yet heterogeneity exists across cities/counties; (2) the volume and spatial distribution of certain crime types changed under BLM protest, the activity of burglary clustered in certain regions during protests period; (3) education, race, demographic, and crime rate in 2019 are related with burglary changes during BLM protests. The findings from this study can provide valuable information for ensuring the capabilities of the police and governmental agencies to deal with the evolving crisis. 
    more » « less
  3. Although standard statistical methods and climate models can simulate and predict sea-ice changes well, it is still very hard to distinguish some direct and robust factors associated with sea-ice changes from its internal variability and other noises. Here, with long-term observations (38 years from 1980 to 2017), we apply the causal effect networks algorithm to explore the direct precursors of September Arctic sea-ice extent by adjusting the maximal lead time from one to eight months. For lead time of more than three months, June downward longwave radiation flux in the Canadian Arctic Archipelago is the only one precursor. However, for lead time of 1–3 months, August sea-ice concentration in Western Arctic represents the strongest positive correlation with September sea-ice extent, while August sea-ice concentration factors in other regions have weaker influences on the marginal seas. Other precursors include August wind anomalies in the lower latitudes accompanied with an Arctic high pressure anomaly, which induces the sea-ice loss along the Eurasian coast. These robust precursors can be used to improve the seasonal predictions of Arctic sea ice and evaluate the climate models. 
    more » « less