skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Junchen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 7, 2026
  2. Summary Understanding the transport and retention of elastic nanogel and microgel particles in porous media has been a significant research subject for decades, essential to the application of enhanced oil recovery (EOR). However, a lack of dynamic adsorption and desorption studies, in which the kinetics in porous media are seldom investigated, hinders the design and application of polymer nanogel in underground porous media. In this work, we visualized and quantified the transport and dynamic adsorption of polymer nanogel in 3D glass micromodels that were manufactured by packing glass beads in capillaries. Calibrating the linearity of fluorescence intensity to concentration, we calculated the adsorption kinetics at concentrations of 0.1 wt%, 0.2 wt%, and 0.3 wt% and flow rates of 0.01 mL/h, 0.02 mL/h, and 0.03 mL/h. In addition to time, concentration, and flow rate, the experimental results showed that dynamic adsorption is also a function of transport distance, which is due to the different adsorption abilities of particles. We also found that the uneven adsorption distribution can be attenuated by decreasing nanogel concentration or increasing flow rate. The work provides a new method to obtain adsorption and desorption kinetics and adsorption profile of submicron particles in porous media at flowing conditions through microfluidics. 
    more » « less
    Free, publicly-accessible full text available December 4, 2025
  3. MnO(001) thin films were grown on commercial MgO(001) substrates at 520 °C by reactive molecular beam epitaxy (MBE) using Mn vapor and O2-seeded supersonic molecular beams (SMBs) both with and without radio frequency (RF) plasma excitation. For comparison, MnO(001) films were grown by reactive MBE using O2 from a leak valve. X-ray photoelectron spectroscopy confirmed the Mn2+ oxidation state and 10%–15% excess oxygen near the growth surface. Reflection high-energy electron diffraction and x-ray diffraction evidenced that the films were rock salt cubic MnO with very strong (001) orientation. High-angle annular dark field scanning transmission electron microscopy with energy-dispersive x-ray spectroscopy demonstrated abrupt MnO/MgO interfaces and indicated [(001)MnO||(001)MgO] epitaxial growth. Ex situ atomic force microscopy of films deposited without RF excitation revealed smooth growth surfaces. An SMB-grown MnO(001) film was converted to Mn3O4 with strong (110) orientation by post-growth exposure to an RF-discharge (RFD) SMB source providing O atoms; the surface of the resultant film contained elongated pits aligned with the MgO110 directions. In contrast, using the RFD-SMB source for growth resulted in MnO(001) films with elongated growth pits and square pyramidal hillocks aligned along the MgO110 and 100 directions, respectively. 
    more » « less
  4. Over the past two decades, chemical looping combustion (CLC) has been extensively investigated as a promising means to produce electric power while generating a concentrated carbon dioxide stream for sequestration. We note that the chemical looping strategy can be extended well outside of combustion-based carbon capture. In fact, application of the chemical looping strategy in areas beyond combustion can result in somewhat unexpected energy and carbon dioxide savings without producing a concentrated CO2 stream at all. Furthermore, it allows the looping-based technologies to tap into applications such as chemical production – a $4 trillion per year industrial sector with high energy and carbon intensities. The key resides in the design of effective oxygen carriers, also known as redox catalysts in the context of selective chemical conversion through chemical looping catalysis (CLCa). This contribution focuses on the design and applications of mixed oxides as multi-function reaction media in CLCa. Since typical mixed oxide oxygen carriers tend to be nonselective for hydrocarbon conversion, the first part of this article presents generalized design principles for surface modification of mixed oxides to improve their selectivity and catalytic activity. Applications of these redox catalysts in chemical looping – oxidative dehydrogenation (CL-ODH) of a variety of light alkanes and alkyl-benzenes are presented. This is followed with a discussion of computation assisted mixed oxide design based upon thermodynamic criteria. Finally, a few new directions for the chemical looping technologies are introduced. 
    more » « less
  5. The current study reports AxA’1-xByB’1-yO3-𝛿 perovskite redox catalysts (RCs) for CO2-splitting and methane partial oxidation (POx) in a cyclic redox scheme. Strontium (Sr) and iron (Fe) were chosen as A and B site elements with A’ being lanthanum (La), samarium (Sm) or yttrium (Y), and B’ being manganese (Mn), or titanium (Ti) to tailor their equilibrium oxygen partial pressures (P_(O_2 ) s) for CO2-splitting and methane partial oxidation. DFT calculations were performed for predictive optimization of the oxide materials whereas experimental investigation confirmed the DFT predicted redox performance. The redox kinetics of the RCs improved significantly by 1 wt.% ruthenium (Ru) impregnation without affecting their redox thermodynamics. Ru impregnated LaFe0.375Mn0.625O3 (A=0, A’=La, B=Fe, and B’=Mn) was the most promising RC in terms of its superior redox performance (CH4/CO2 conversion >90% and CO selectivity~ 95%) at 800oC. Long-term redox testing over Ru impregnated LaFe0.375Mn0.625O3 indicated stable performance during the first 30 cycles following with a ~25% decrease in the activity during the last 70 cycles. Air treatment was effective to reactivate the redox catalyst. Detailed characterizations revealed the underlying mechanism for redox catalyst deactivation and reactivation. This study not only validated a DFT guided mixed oxide design strategy for CO2 utilization but also provides potentially effective approaches to enhance redox kinetics as well as long-term redox catalyst performance. 
    more » « less