skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Liu, Kang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Parkinson’s disease is the world’s fastest-growing neurological disorder. Research to elucidate the mechanisms of Parkinson’s disease and automate diagnostics would greatly improve the treatment of patients with Parkinson’s disease. Current diagnostic methods are expensive and have limited availability. Considering the insidious and preclinical onset and progression of the disease, a desirable screening should be diagnostically accurate even before the onset of symptoms to allow medical interventions. We highlight retinal fundus imaging, often termed a window to the brain, as a diagnostic screening modality for Parkinson’s disease. We conducted a systematic evaluation of conventional machine learning and deep learning techniques to classify Parkinson’s disease from UK Biobank fundus imaging. Our results suggest Parkinson’s disease individuals can be differentiated from age and gender-matched healthy subjects with 68% accuracy. This accuracy is maintained when predicting either prevalent or incident Parkinson’s disease. Explainability and trustworthiness are enhanced by visual attribution maps of localized biomarkers and quantified metrics of model robustness to data perturbations. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Free, publicly-accessible full text available November 1, 2025
  3. The burgeoning field of brain health research increasingly leverages artificial intelligence (AI) to analyze and interpret neuroimaging data. Medical foundation models have shown promise of superior performance with better sample efficiency. This work introduces a novel approach towards creating 3-dimensional (3D) medical foundation models for multimodal neuroimage segmentation through self-supervised training. Our approach involves a novel two-stage pretraining approach using vision transformers. The first stage encodes anatomical structures in generally healthy brains from the large-scale unlabeled neuroimage dataset of multimodal brain magnetic resonance imaging (MRI) images from 41,400 participants. This stage of pertaining focuses on identifying key features such as shapes and sizes of different brain structures. The second pretraining stage identifies disease-specific attributes, such as geometric shapes of tumors and lesions and spatial placements within the brain. This dual-phase methodology significantly reduces the extensive data requirements usually necessary for AI model training in neuroimage segmentation with the flexibility to adapt to various imaging modalities. We rigorously evaluate our model, BrainSegFounder, using the Brain Tumor Segmentation (BraTS) challenge and Anatomical Tracings of Lesions After Stroke v2.0 (ATLAS v2.0) datasets. BrainSegFounder demonstrates a significant performance gain, surpassing the achievements of the previous winning solutions using fully supervised learning. Our findings underscore the impact of scaling up both the model complexity and the volume of unlabeled training data derived from generally healthy brains. Both of these factors enhance the accuracy and predictive capabilities of the model in neuroimage segmentation tasks. Our pretrained models and code are at https://github.com/lab-smile/BrainSegFounder. 
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  4. BackgroundClinical prediction models suffer from performance drift as the patient population shifts over time. There is a great need for model updating approaches or modeling frameworks that can effectively use the old and new data. ObjectiveBased on the paradigm of transfer learning, we aimed to develop a novel modeling framework that transfers old knowledge to the new environment for prediction tasks, and contributes to performance drift correction. MethodsThe proposed predictive modeling framework maintains a logistic regression–based stacking ensemble of 2 gradient boosting machine (GBM) models representing old and new knowledge learned from old and new data, respectively (referred to as transfer learning gradient boosting machine [TransferGBM]). The ensemble learning procedure can dynamically balance the old and new knowledge. Using 2010-2017 electronic health record data on a retrospective cohort of 141,696 patients, we validated TransferGBM for hospital-acquired acute kidney injury prediction. ResultsThe baseline models (ie, transported models) that were trained on 2010 and 2011 data showed significant performance drift in the temporal validation with 2012-2017 data. Refitting these models using updated samples resulted in performance gains in nearly all cases. The proposed TransferGBM model succeeded in achieving uniformly better performance than the refitted models. ConclusionsUnder the scenario of population shift, incorporating new knowledge while preserving old knowledge is essential for maintaining stable performance. Transfer learning combined with stacking ensemble learning can help achieve a balance of old and new knowledge in a flexible and adaptive way, even in the case of insufficient new data. 
    more » « less