Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Imaging of surface-enhanced Raman scattering (SERS) nanoparticles (NPs) has been intensively studied for cancer detection due to its high sensitivity, unconstrained low signal-to-noise ratios, and multiplexing detection capability. Furthermore, conjugating SERS NPs with various biomarkers is straightforward, resulting in numerous successful studies on cancer detection and diagnosis. However, Raman spectroscopy only provides spectral data from an imaging area without co-registered anatomic context. This is not practical and suitable for clinical applications. Here, we propose a custom-made Raman spectrometer with computer-vision-based positional tracking and monocular depth estimation using deep learning (DL) for the visualization of 2D and 3D SERS NPs imaging, respectively. In addition, the SERS NPs used in this study (hyaluronic acid-conjugated SERS NPs) showed clear tumor targeting capabilities (target CD44 typically overexpressed in tumors) by anex vivoexperiment and immunohistochemistry. The combination of Raman spectroscopy, image processing, and SERS molecular imaging, therefore, offers a robust and feasible potential for clinical applications.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Surface enhanced resonance Raman (SERS) is a powerful optical technique, which can help enhance the sensitivity of Raman spectroscopy aided by noble metal nanoparticles (NPs). However, current SERS‐NPs are often suboptimal, which can aggregate under physiological conditions with much reduced SERS enhancement. Herein, a robust one‐pot method has been developed to synthesize SERS‐NPs with more uniform core diameters of 50 nm, which is applicable to both non‐resonant and resonant Raman dyes. The resulting SERS‐NPs are colloidally stable and bright, enabling NP detection with low‐femtomolar sensitivity. An algorithm has been established, which can accurately unmix multiple types of SERS‐NPs enabling potential multiplex detection. Furthermore, a new liposome‐based approach has been developed to install a targeting carbohydrate ligand, i.e., hyaluronan, onto the SERS‐NPs bestowing significantly enhanced binding affinity to its biological receptor CD44 overexpressed on tumor cell surface. The liposomal hyaluronan (HA)‐SERS‐NPs enabled visualization of spontaneously developed breast cancer in mice in real time guiding complete surgical removal of the tumor, highlighting the translational potential of these new glyco‐SERS‐NPs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
