skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Liu, Lihui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 24, 2025
  2. Free, publicly-accessible full text available May 13, 2025
  3. Knowledge graph question answering aims to identify answers of the query according to the facts in the knowledge graph. In the vast majority of the existing works, the input queries are considered perfect and can precisely express the user’s query intention. However, in reality, input queries might be ambiguous and elusive which only contain a limited amount of information. Directly answering these ambiguous queries may yield unwanted answers and deteriorate user experience. In this paper, we propose PReFNet which focuses on answering ambiguous queries with pseudo relevance feedback on knowledge graphs. In order to leverage the hidden (pseudo) relevance information existed in the results that are initially returned from a given query, PReFNet treats the top-k returned candidate answers as a set of most relevant answers, and uses variational Bayesian inference to infer user’s query intention. To boost the quality of the inferred queries, a neighborhood embedding based VGAE model is used to prune inferior inferred queries. The inferred high quality queries will be returned to the users to help them search with ease. Moreover, all the high-quality candidate nodes will be re-ranked according to the inferred queries. The experiment results show that our proposed method can recommend high-quality query graphs to users and improve the question answering accuracy. 
    more » « less
  4. Knowledge graph is ubiquitous and plays an important role in many real-world applications, including recommender systems, question answering, fact-checking, and so on. However, most of the knowledge graphs are incomplete which can hamper their practical usage. Fortunately, knowledge graph completion (KGC) can mitigate this problem by inferring missing edges in the knowledge graph according to the existing information. In this paper, we propose a novel KGC method named ABM (Attention-Based Message passing) which focuses on predicting the relation between any two entities in a knowledge graph. The proposed ABM consists of three integral parts, including (1) context embedding, (2) structure embedding, and (3) path embedding. In the context embedding, the proposed ABM generalizes the existing message passing neural network to update the node embedding and the edge embedding to assimilate the knowledge of nodes' neighbors, which captures the relative role information of the edge that we want to predict. In the structure embedding, the proposed method overcomes the shortcomings of the existing GNN method (i.e., most methods ignore the structural similarity between nodes.) by assigning different attention weights to different nodes while doing the aggregation. Path embedding generates paths between any two entities and treats these paths as sequences. Then, the sequence can be used as the input of the Transformer to update the embedding of the knowledge graph to gather the global role of the missing edges. By utilizing these three mutually complementary strategies, the proposed ABM is able to capture both the local and global information which in turn leads to a superb performance. Experiment results show that ABM outperforms baseline methods on a wide range of datasets. 
    more » « less
  5. Knowledge graph has been widely used in fact checking, owing to its capability to provide crucial background knowledge to help verify claims. Traditional fact checking works mainly focus on analyzing a single claim but have largely ignored analysis on the semantic consistency of pair-wise claims, despite its key importance in the real-world applications, e.g., multimodal fake news detection. This paper proposes a graph neural network based model INSPECTOR for pair-wise fact checking. Given a pair of claims, INSPECTOR aims to detect the potential semantic inconsistency of the input claims. The main idea of INSPECTOR is to use a graph attention neural network to learn a graph embedding for each claim in the pair, then use a tensor neural network to classify this pair of claims as consistent vs. inconsistent. The experiment results show that our algorithm outperforms state-of-the-art methods, with a higher accuracy and a lower variance. 
    more » « less
  6. Knowledge graph reasoning plays a pivotal role in many real-world applications, such as network alignment, computational fact-checking, recommendation, and many more. Among these applications, knowledge graph completion (KGC) and multi-hop question answering over knowledge graph (Multi-hop KGQA) are two representative reasoning tasks. In the vast majority of the existing works, the two tasks are considered separately with different models or algorithms. However, we envision that KGC and Multi-hop KGQA are closely related to each other. Therefore, the two tasks will benefit from each other if they are approached adequately. In this work, we propose a neural model named BiNet to jointly handle KGC and multi-hop KGQA, and formulate it as a multi-task learning problem. Specifically, our proposed model leverages a shared embedding space and an answer scoring module, which allows the two tasks to automatically share latent features and learn the interactions between natural language question decoder and answer scoring module. Compared to the existing methods, the proposed BiNet model addresses both multi-hop KGQA and KGC tasks simultaneously with superior performance. Experiment results show that BiNet outperforms state-of-the-art methods on a wide range of KGQA and KGC benchmark datasets. 
    more » « less