skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Linxi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Agrawal, Shipra; Roth, Aaron (Ed.)
    Tree-based methods are popular nonparametric tools for capturing spatial heterogeneity and making predictions in multivariate problems. In unsupervised learning, trees and their ensembles have also been applied to a wide range of statistical inference tasks, such as multi-resolution sketching of distributional variations, localization of high-density regions, and design of efficient data compression schemes. In this paper, we study the spatial adaptation property of Bayesian tree-based methods in the unsupervised setting, with a focus on the density estimation problem. We characterize spatial heterogeneity of the underlying density function by using anisotropic Besov spaces, region-wise anisotropic Besov spaces, and two novel function classes as their extensions. For two types of commonly used prior distributions on trees under the context of unsupervised learning—the optional P{ó}lya tree (Wong and Ma, 2010) and the Dirichlet prior (Lu et al., 2013)—we calculate posterior concentration rates when the density function exhibits different types of heterogeneity. In specific, we show that the posterior concentration rate for trees is near minimax over the anisotropic Besov space. The rate is adaptive in the sense that to achieve such a rate we do not need any prior knowledge of the parameters of the Besov space. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Agrawal, Shipra; Roth, Aaron (Ed.)
    Tree-based methods are popular nonparametric tools for capturing spatial heterogeneity and making predictions in multivariate problems. In unsupervised learning, trees and their ensembles have also been applied to a wide range of statistical inference tasks, such as multi-resolution sketching of distributional variations, localization of high-density regions, and design of efficient data compression schemes. In this paper, we study the spatial adaptation property of Bayesian tree-based methods in the unsupervised setting, with a focus on the density estimation problem. We characterize spatial heterogeneity of the underlying density function by using anisotropic Besov spaces, region-wise anisotropic Besov spaces, and two novel function classes as their extensions. For two types of commonly used prior distributions on trees under the context of unsupervised learning—the optional P{ó}lya tree (Wong and Ma, 2010) and the Dirichlet prior (Lu et al., 2013)—we calculate posterior concentration rates when the density function exhibits different types of heterogeneity. In specific, we show that the posterior concentration rate for trees is near minimax over the anisotropic Besov space. The rate is adaptive in the sense that to achieve such a rate we do not need any prior knowledge of the parameters of the Besov space. 
    more » « less
  3. Agrawal, Shipra; Roth, Aaron (Ed.)
  4. Density estimation is a building block for many other statistical methods, such as classification, nonparametric testing, and data compression. In this paper, we focus on a non-parametric approach to multivariate density estimation, and study its asymptotic properties under both frequentist and Bayesian settings. The estimated density function is obtained by considering a sequence of approximating spaces to the space of densities. These spaces consist of piecewise constant density functions supported by binary partitions with increasing complexity. To obtain an estimate, the partition is learned by maximizing either the likelihood of the corresponding histogram on that partition, or the marginal posterior probability of the partition under a suitable prior. We analyze the convergence rate of the maximum likelihood estimator and the posterior concentration rate of the Bayesian estimator, and conclude that for a relatively rich class of density functions the rate does not directly depend on the dimension. We also show that the Bayesian method can adapt to the unknown smoothness of the density function. The method is applied to several specific function classes and explicit rates are obtained. These include spatially sparse functions, functions of bounded variation, and Holder continuous functions. We also introduce an ensemble approach, obtained by aggregating multiple density estimates fit under carefully designed perturbations, and show that for density functions lying in a Holder space (H^(1,β),0<β≤1), the ensemble method can achieve minimax convergence rate up to a logarithmic term, while the corresponding rate of the density estimator based on a single partition is suboptimal for this function class. 
    more » « less
  5. Abstract Recent advances in genome sequencing and imputation technologies provide an exciting opportunity to comprehensively study the contribution of genetic variants to complex phenotypes. However, our ability to translate genetic discoveries into mechanistic insights remains limited at this point. In this paper, we propose an efficient knockoff-based method, GhostKnockoff, for genome-wide association studies (GWAS) that leads to improved power and ability to prioritize putative causal variants relative to conventional GWAS approaches. The method requires only Z-scores from conventional GWAS and hence can be easily applied to enhance existing and future studies. The method can also be applied to meta-analysis of multiple GWAS allowing for arbitrary sample overlap. We demonstrate its performance using empirical simulations and two applications: (1) a meta-analysis for Alzheimer’s disease comprising nine overlapping large-scale GWAS, whole-exome and whole-genome sequencing studies and (2) analysis of 1403 binary phenotypes from the UK Biobank data in 408,961 samples of European ancestry. Our results demonstrate that GhostKnockoff can identify putatively functional variants with weaker statistical effects that are missed by conventional association tests. 
    more » « less