Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Online health communities (OHCs) provide free, open, and well-resourced platforms for patients, family members, and others to discuss illnesses, express feelings, and connect with others. Linguistic analysis of OHC posts can assist in better understanding disease conditions as well as monitoring the emotional and mental status of patients and those who are closely related. Many existing OHC linguistic analyses are limited by focusing on individual words. There are a handful of cooccurrence network analyses, which have multiple methodological limitations. In this article we analyze posts that are publicly available at the LUNGevity Foundation’s Lung Cancer Support Community (LCSC). The analyzed data contains 21,028 posts published between April 2018 and February 2022. For word cooccurrence network analysis, we develop a two-part latent space model, which advances from the existing ones by accommodating network weights. Further, we consider the scenario where there are change points in time, networks remain the same between two change points but differ on the two sides of a change point, and the number and locations of change points are unknown. A penalized fusion approach is developed to data-dependently determine change points and estimate networks. In data analysis multiple change points are identified, which reflect significant changes in lung cancer patients’ and their close affiliates’ emotional/mental status and mostly align with the changes in COVID-19. The obtained network structures and other findings are also sensible.more » « lessFree, publicly-accessible full text available March 1, 2025
-
A Linguistic Analysis of News Coverage of E-Healthcare in China with a Heterogeneous Graphical ModelE-healthcare has been envisaged as a major component of the infrastructure of modern healthcare, and has been developing rapidly in China. For healthcare, news media can play an important role in raising public interest and utilization of a particular service and complicating (and, perhaps clouding) debate on public health policy issues. We conducted a linguistic analysis of news reports from January 2015 to June 2021 related to E-healthcare in mainland China, using a heterogeneous graphical modeling approach. This approach can simultaneously cluster the datasets and estimate the conditional dependence relationships of keywords. It was found that there were eight phases of media coverage. The focuses and main topics of media coverage were extracted based on the network hub and module detection. The temporal patterns of media reports were found to be mostly consistent with the policy trend. Specifically, in the policy embryonic period (2015–2016), two phases were obtained, industry management was the main topic, and policy and regulation were the focuses of media coverage. In the policy development period (2017–2019), four phases were discovered. All the four main topics, namely industry development, health care, financial market, and industry management, were present. In 2017 Q3–2017 Q4, the major focuses of media coverage included social security, healthcare and reform, and others. In 2018 Q1, industry regulation and finance became the focuses. In the policy outbreak period (2020–), two phases were discovered. Financial market and industry management were the main topics. Medical insurance and healthcare for the elderly became the focuses. This analysis can offer insights into how the media responds to public policy for E-healthcare, which can be valuable for the government, public health practitioners, health care industry investors, and others.more » « less