skip to main content

Search for: All records

Creators/Authors contains: "Liu, Qian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2025
  2. Free, publicly-accessible full text available April 1, 2025
  3. The distribution of dissolved iodine in seawater is sensitive to multiple biogeochemical cycles, including those of nitrogen and oxygen. The iodine-to-calcium ratio (I/Ca) of marine carbonates, such as bulk carbonate or foraminifera, has emerged as a potential proxy for changes in past seawater oxygenation. However, the utility of the I/Ca proxy in deep-sea corals, natural archives of seawater chemistry with wide spatial coverage and radiometric dating potential, remains unexplored. Here, we present the first I/Ca data obtained from modern deep-sea corals, specifically scleractinian and bamboo corals, collected from the Atlantic, Eastern Pacific, and Southern Oceans, encompassing a wide range of seawater oxygen concentrations (10–280 μmol/kg). In contrast to thermodynamic predictions, we observe higher I/Ca ratios in aragonitic corals (scleractinian) compared to calcitic corals (bamboo). This observation suggests a strong biological control during iodate incorporation into deep-sea coral skeletons. For the majority of scleractinian corals, I/Ca exhibits a covariation with local seawater iodate concentrations, which is closely related to seawater oxygen content. Scleractinian corals also exhibit notably lower I/Ca below a seawater oxygen threshold of approximately 160 μmol/kg. In contrast, no significant differences in I/Ca are found among bamboo corals across the range of oxygen concentrations encountered (15–240 μmol/kg). In the North Atlantic, several hydrographic factors, such as temperature and/or salinity, may additionally affect coral I/Ca. Our results highlight the potential of I/Ca ratios in deep-sea scleractinian corals to serve as an indicator of past seawater iodate concentrations, providing valuable insights into historical seawater oxygen levels.

    more » « less
    Free, publicly-accessible full text available November 7, 2024
  4. Free, publicly-accessible full text available October 2, 2024
  5. This paper analyzes the spatiotemporal patterns of nitrogen dioxide (NO2) tropospheric vertical column densities (TVCDs) before and during the second wave of COVID-19 in India. The results indicate that the NO2 columns increase significantly in the reopening period before the second wave (Mar. 1 ∼ Apr. 20) in 2021, which exceed the levels of the same period in 2019. The relative difference from the mean of 2010–2019 is 18.76% higher in 2021 than that of 2019, during the reopening. The paper identifies Odisha, Madhya Pradesh, Chhattisgarh, Jharkhand and West Bengal as the five states with the largest increases in relative difference from 2019 to 2021, which are 33.81%, 29.83%, 23.86%, 30.01%, and 25.48% respectively. As illustrated by trends in the indices of industrial production (IIP), these unexpected increases in tropospheric NO2 can be attributed to reopening as well as elevated production across various sectors including electricity, manufacturing and mining. Analysis of NO2 TVCD levels alongside IIPs indicate a marked increase in industrial activity during the reopening period in 2021 than in the same time period in 2019. After the beginning of the second wave of COVID-19 (Apr. 21 ∼ Jun. 21), India re-implemented lockdown policies to mitigate the spread of the pandemic. During this period, the relative difference of total NO2 columns declined in India as well as in most individual study regions, when compared to 2019, due to the pandemic mitigation policies. The relative declines are as follows: 6.43% for the whole country and 14.25%, 22.88%, 4.57% and 7.89% for Odisha, Madhya Pradesh, Chhattisgarh and Jharkhan, respectively, which contain large industrial clusters. The change in relative difference in West Bengal from 2019 to 2021 is not significant during the re-lockdown period with a 0.04% increase. As with the first wave, these decreases in NO2 TVCD mainly due to the mitigation policies during the second wave. 
    more » « less
  6. Space-time adaptive processing (STAP) is an effective method for multi-input multi-output (MIMO) radar systems to identify moving targets in the presence of multiple interferers. The idea of joint optimization in both spatial and temporal domains for radar detection is consistent with the symbol-level precoding (SLP) technique for MIMO communication systems, that optimizes the transmit waveform according to instantaneous transmitted symbols. Therefore, in this paper we combine STAP and constructive interference (CI)-based SLP techniques to realize dual-functional radar-communication (DFRC). The radar output signal-to-interference-plus-noise ratio (SINR) is maximized by jointly optimizing the transmit waveform and receive filter, while satisfying the communication quality-of-service (QoS) constraints and the constant modulus power constraint. An efficient algorithm based on majorization-minimization (MM) and nonlinear equality constrained alternative direction method of multipliers (neADMM) methods is proposed to solve the non-convex optimization problem. Simulation results verify the effectiveness of the proposed DFRC scheme and the associate algorithm. 
    more » « less