skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Pulsar’s Application in Energy Systems: Review of Current Status, Challenges, and Opportunities
To accelerate progress toward the realization of advanced energy systems, this review explores the potential of pulsar technology to create a more stable, economical, and environmentally friendly energy infrastructure. Pulsars, with their precise and reliable timing characteristics, have emerged as a promising tool for enhancing energy systems. This review begins by examining the development history of pulsar technology, shedding light on its evolution and the milestones achieved. It then provides a comprehensive summary of the current state of research, highlighting recent advancements and breakthroughs in this field. It also explores transformative pulsar applications in energy systems, including improved grid stability, advanced energy synchronization, and efficient energy storage management. However, implementing pulsar-related technologies presents significant technical, economic, and operational challenges. This review examines these hurdles and proposes strategies to overcome them, emphasizing the need for innovation, interdisciplinary collaboration, and supportive policies to fully integrate pulsar technologies into sustainable energy systems.  more » « less
Award ID(s):
1920025
PAR ID:
10634845
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Energies
Volume:
18
Issue:
4
ISSN:
1996-1073
Page Range / eLocation ID:
828
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Designing and manufacturing devices at the micro- and nanoscales offers significant advantages, including high precision, quick response times, high energy density ratios, and low production costs. These benefits have driven extensive research in micro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS), resulting in various classifications of materials and manufacturing techniques, which are ultimately used to produce different classifications of MEMS devices. The current work aims to systematically organize the literature on MEMS in biomedical devices, encompassing past achievements, present developments, and future prospects. This paper reviews the current research trends, highlighting significant material advancements and emerging technologies in biomedical MEMS in order to meet the current challenges facing the field, such as ensuring biocompatibility, achieving miniaturization, and maintaining precise control in biological environments. It also explores projected applications, including use in advanced diagnostic tools, targeted drug delivery systems, and innovative therapeutic devices. By mapping out these trends and prospects, this review will help identify current research gaps in the biomedical MEMS field. By pinpointing these gaps, researchers can focus on addressing unmet needs and advancing state-of-the-art biomedical MEMS technology. Ultimately, this can lead to the development of more effective and innovative biomedical devices, improving patient care and outcomes. 
    more » « less
  2. High Voltage Direct Current (HVDC) technology is a cornerstone of efficient Offshore Wind Farm (OWF) power transmission. This review examines the integration of HVDC technology in OWFs, considering collection and transmission aspects. The analysis is structured around four key dimensions: economic considerations, connection topologies, converter designs, and technical modeling. It begins with an in-depth economic analysis, evaluating cost-effectiveness, reliability, and market dynamics, focusing on investment, operational costs, and lifecycle expenses. Building on this foundation, the review explores various collection and transmission architectures, highlighting their technical and economical trade-offs, and evaluates power converter designs for efficiency, reliability, and offshore adaptability. Finally, advanced modeling and simulation techniques are reviewed to optimize system performance, enhance reliability, and balance computational efficiency. Throughout each of the four sections, economic and technical constraints are considered together. This helps to improve understanding of how systems can be designed in a way that meets the constraints of both fields and to enhance feasibility on both dimensions. These insights provide a holistic framework for sustainable and economically viable Offshore Wind Energy (OWE) integration. 
    more » « less
  3. Abstract This review is focused on tests of Einstein’s theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein’s theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves are allowing us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamicalextreme gravity regime. Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review then discusses gravitational-wave tests using compact binary systems, and ends with a description of the first gravitational wave observations by advanced LIGO, the stochastic gravitational wave background observations by pulsar timing arrays, and the tests that can be performed with them. 
    more » « less
  4. Abstract MXenes exhibit remarkable properties, including high electrical conductivity, tunable surface chemistry, outstanding mechanical strength, and notable hydrophilicity. Recent advancements in bio‐functionalization have further enhanced these intrinsic characteristics, unlocking unprecedented opportunities for MXenes across a wide spectrum of applications in both biomedical and environmental domains. This review provides an in‐depth analysis of the synthesis strategies and functionalization techniques that improve MXenes' biocompatibility and expand their potential uses in cutting‐edge applications, including implantable and wearable devices, drug delivery systems, cancer therapies, tissue engineering, and advanced sensing technologies. Moreover, the review explores the utility of bio‐functionalized MXenes in areas such as corrosion protection, water purification, and food safety sensors, underscoring their versatility in addressing urgent global challenges. By conducting a critical evaluation of current research, this review not only highlights the immense potential of bio‐functionalized MXenes but also identifies pivotal gaps in the literature, offering clear pathways for future exploration and innovation in this rapidly evolving field. 
    more » « less
  5. Significant advances in bionic prosthetics have occurred in the past two decades. The field's rapid expansion has yielded many exciting technologies that can enhance the physical, functional, and cognitive integration of a prosthetic limb with a human. We review advances in the engineering of prosthetic devices and their interfaces with the human nervous system, as well as various surgical techniques for altering human neuromusculoskeletal systems for seamless human–prosthesis integration. We discuss significant advancements in research and clinical translation, focusing on upper limbprosthetics since they heavily rely on user intent for daily operation, although many discussed technologies have been extended to lower limb prostheses as well. In addition, our review emphasizes the roles of advanced prosthetics technologies in complex interactions with humans and the technology readiness levels (TRLs) of individual research advances. Finally, we discuss current gaps and controversies in the field and point out future research directions, guided by TRLs. 
    more » « less