Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Chromatin organization plays a critical role in cellular function by regulating access to genetic information. However, understanding chromatin folding is challenging due to its complex, multiscale nature. Significant progress has been made in studying in vitro systems, uncovering the structure of individual nucleosomes and their arrays, and elucidating the role of physicochemical forces in stabilizing these structures. Additionally, remarkable advancements have been achieved in characterizing chromatin organization in vivo, particularly at the whole-chromosome level, revealing important features such as chromatin loops, topologically associating domains, and nuclear compartments. However, bridging the gap between in vitro and in vivo studies remains challenging. The resemblance between in vitro and in vivo chromatin conformations and the relevance of internucleosomal interactions for chromatin folding in vivo are subjects of debate. This article reviews experimental and computational studies conducted at various length scales, highlighting the significance of intrinsic interactions between nucleosomes and their roles in chromatin folding in vivo.more » « less
-
Wei, Guanghong (Ed.)Biomolecular condensates are important structures in various cellular processes but are challenging to study using traditional experimental techniques. In silico simulations with residue-level coarse-grained models strike a balance between computational efficiency and chemical accuracy. They could offer valuable insights by connecting the emergent properties of these complex systems with molecular sequences. However, existing coarse-grained models often lack easy-to-follow tutorials and are implemented in software that is not optimal for condensate simulations. To address these issues, we introduce OpenABC, a software package that greatly simplifies the setup and execution of coarse-grained condensate simulations with multiple force fields using Python scripting. OpenABC seamlessly integrates with the OpenMM molecular dynamics engine, enabling efficient simulations with performance on a single GPU that rivals the speed achieved by hundreds of CPUs. We also provide tools that convert coarse-grained configurations to all-atom structures for atomistic simulations. We anticipate that OpenABC will significantly facilitate the adoption of in silico simulations by a broader community to investigate the structural and dynamical properties of condensates.more » « less
-
Abstract The arrangement of nucleosomes inside chromatin is of extensive interest. While in vitro experiments have revealed the formation of 30 nm fibers, most in vivo studies have failed to confirm their presence in cell nuclei. To reconcile the diverging experimental findings, we characterized chromatin organization using a residue-level coarse-grained model. The computed force–extension curve matches well with measurements from single-molecule experiments. Notably, we found that a dodeca-nucleosome in the two-helix zigzag conformation breaks into structures with nucleosome clutches and a mix of trimers and tetramers under tension. Such unfolded configurations can also be stabilized through trans interactions with other chromatin chains. Our study suggests that unfolding from chromatin fibers could contribute to the irregularity of in vivo chromatin configurations. We further revealed that chromatin segments with fibril or clutch structures engaged in distinct binding modes and discussed the implications of these inter-chain interactions for a potential sol–gel phase transition.more » « less
An official website of the United States government
