Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Geometry projection-based topology optimization has attracted a great deal of attention because it enables the design of structures consisting of a combination of geometric primitives and simplifies the integration with computer-aided design (CAD) systems. While the approach has undergone substantial development under the assumption of linear theory, it remains to be developed for non-linear hyperelastic problems. In this study, a geometrically non-linear explicit topology optimization approach is proposed in the framework of the geometry projection method. The energy transition strategy is adopted to mitigate excessive distortion in low-stiffness regions that might cause the equilibrium iterations to diverge. A neo-Hookean hyperelastic strain energy potential is used to model the material behavior. Design sensitivities of the functions passed to the gradient-based optimizer are detailed and verified. The proposed method is used to solve benchmark problems for which the output displacement in a compliant mechanism is maximized and the structural compliance is minimized.more » « lessFree, publicly-accessible full text available February 1, 2026