Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This study assesses the ecohydrological effects of recent meteorological droughts in tropical South America based on multiple sources of data, and investigates the possible mechanisms underlying the drought response and recovery of different ecohydrological systems. Soil drought response and recovery lag behind the meteorological drought, with delays longer in the dry region (Nordeste) than in the wet region (Amazonia), and longer in deep soil than in shallow soil. Evapotranspiration (ET) and vegetation in Nordeste are limited by water under normal conditions and decrease promptly in response to the onset of shallow soil drought. In most of the Amazon where water is normally abundant, ET and vegetation indices follow an increase-then-decrease pattern, increase at the drought onset due to increased sunshine and decrease when the drought is severe enough to cause a shift from an energy-limited regime to a water-limited regime. After the demise of meteorological droughts, ET and vegetation rapidly recover in Nordeste with the replenishment of shallow soil moisture (SM), but take longer to recover in southern Amazon due to their dependence on deep SM storage. Following severe droughts, the negative anomalies of ET and vegetation indices in southern Amazon tend to persist well beyond the end of soil drought, indicating drought-induced forest mortality that is slow to recover from. Findings from this study may have implications on the possibility of a future forest dieback as drought is projected to become more frequent and more severe in a warmer climate.more » « less
-
null (Ed.)Abstract This study investigates the potential effects of historical deforestation in South America using a regional climate model driven with reanalysis data. Two different sources of data were used to quantify deforestation during the 1980s to 2010s, leading to two scenarios of forest loss: smaller but spatially continuous in scenario 1 and larger but spatially scattered in scenario 2. The model simulates a generally warmer and drier local climate following deforestation. Vegetation canopy becomes warmer due to reduced canopy evapotranspiration, and ground becomes warmer due to more radiation reaching the ground. The warming signal for surface air is weaker than for ground and vegetation, likely due to reduced surface roughness suppressing the sensible heat flux. For surface air over deforested areas, the warming signal is stronger for the nighttime minimum temperature and weaker or even becomes a cooling signal for the daytime maximum temperature, due to the strong radiative effects of albedo at midday, which reduces the diurnal amplitude of temperature. The drying signals over deforested areas include lower atmospheric humidity, less precipitation, and drier soil. The model identifies the La Plata basin as a region remotely influenced by deforestation, where a simulated increase of precipitation leads to wetter soil, higher ET, and a strong surface cooling. Over both deforested and remote areas, the deforestation-induced surface climate changes are much stronger in scenario 2 than scenario 1; coarse-resolution data and models (such as in scenario 1) cannot represent the detailed spatial structure of deforestation and underestimate its impact on local and regional climates.more » « less
-
Abstract. Subseasonal-to-seasonal (S2S) prediction, especially the prediction of extreme hydroclimate events such as droughts and floods, is not only scientifically challenging, but also has substantial societal impacts. Motivated by preliminary studies, the Global Energy and Water Exchanges(GEWEX)/Global Atmospheric System Study (GASS) has launched a new initiativecalled “Impact of Initialized Land Surface Temperature and Snowpack on Subseasonal to Seasonal Prediction” (LS4P) as the first international grass-roots effort to introduce spring land surface temperature(LST)/subsurface temperature (SUBT) anomalies over high mountain areas as acrucial factor that can lead to significant improvement in precipitationprediction through the remote effects of land–atmosphere interactions. LS4P focuses on process understanding and predictability, and hence it is differentfrom, and complements, other international projects that focus on theoperational S2S prediction. More than 40 groups worldwide have participated in this effort, including 21 Earth system models, 9 regionalclimate models, and 7 data groups. This paper provides an overview of the history and objectives of LS4P, provides the first-phase experimental protocol (LS4P-I) which focuses on the remote effect ofthe Tibetan Plateau, discusses the LST/SUBT initialization, and presents thepreliminary results. Multi-model ensemble experiments and analyses ofobservational data have revealed that the hydroclimatic effect of the springLST on the Tibetan Plateau is not limited to the Yangtze River basin but may have a significant large-scale impact on summer precipitation beyond EastAsia and its S2S prediction. Preliminary studies and analysis have alsoshown that LS4P models are unable to preserve the initialized LST anomaliesin producing the observed anomalies largely for two main reasons: (i) inadequacies in the land models arising from total soil depths which are tooshallow and the use of simplified parameterizations, which both tend to limit the soil memory; (ii) reanalysis data, which are used for initial conditions, have large discrepancies from the observed mean state andanomalies of LST over the Tibetan Plateau. Innovative approaches have beendeveloped to largely overcome these problems.more » « less