Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2023
-
High-precision potassium (K) isotope measurements in marine carbonates allow using this novel geochemical proxy to constrain seawater chemistry through geologic time. However, these measurements are still scarce due to the challenges of low-K contents in carbonates during K ion chromatography, such as insufficient sample purification, non-quantitative yield, and high accumulative blank. Here we optimize a dual-column K purification method that addresses these challenges, achieving a satisfactory K separation using 100–150 mg carbonates for routine high-precision K isotope analysis on the Sapphire™ MC-ICP-MS. We then report K isotope compositions in multiple certified reference materials, including limestone, dolostone, coral, and basalt for future inter-laboratory comparisons. The optimized K purification method provides great potential for future K isotope studies of marine carbonates.Free, publicly-accessible full text available November 2, 2023
-
Free, publicly-accessible full text available October 1, 2023
-
Free, publicly-accessible full text available September 1, 2023
-
Free, publicly-accessible full text available September 1, 2023
-
Free, publicly-accessible full text available July 1, 2023
-
Abstract Study of life history strategies may help predict the performance of microorganisms in nature by organizing the complexity of microbial communities into groups of organisms with similar strategies. Here, we tested the extent that one common application of life history theory, the copiotroph-oligotroph framework, could predict the relative population growth rate of bacterial taxa in soils from four different ecosystems. We measured the change of in situ relative growth rate to added glucose and ammonium using both18O–H2O and13C quantitative stable isotope probing to test whether bacterial taxa sorted into copiotrophic and oligotrophic groups. We saw considerable overlap in nutrient responses across most bacteria regardless of phyla, with many taxa growing slowly and few taxa that grew quickly. To define plausible life history boundaries based on in situ relative growth rates, we applied Gaussian mixture models to organisms’ joint18O–13C signatures and found that across experimental replicates, few taxa could consistently be assigned as copiotrophs, despite their potential for fast growth. When life history classifications were assigned based on average relative growth rate at varying taxonomic levels, finer resolutions (e.g., genus level) were significantly more effective in capturing changes in nutrient response than broad taxonomic resolution (e.g., phylum level). Our resultsmore »
-
Fungi of the Conidiobolus group belong to the family Ancylistaceae (Entomophthorales, Entomophthoromycotina, Zoopagomycota) and include over 70 predominantly saprotrophic species in four similar and closely related genera, that were separated phylogenetically recently. Entomopathogenic fungi of the genus Batkoa are very close morphologically to the Conidiobolus species. Their thalli share similar morphology, and they produce ballistic conidia like closely related entomopathogenic Entomophthoraceae. Ballistic conidia are traditionally considered as an efficient tool in the pathogenic process and an important adaptation to the parasitic lifestyle. Our study aims to reconstruct the phylogeny of this fungal group using molecular and genomic data, ancestral lifestyle and morphological features of the conidiobolus-like group and the direction of their evolution. Based on phylogenetic analysis, some species previously in the family Conidiobolaceae are placed in the new families Capillidiaceae and Neoconidiobolaceae, which each include one genus, and the Conidiobolaceae now includes three genera. Intermediate between the conidiobolus-like groups and Entomophthoraceae, species in the distinct Batkoa clade now belong in the family Batkoaceae. Parasitism evolved several times in the Conidiobolus group and Ancestral State Reconstruction suggests that the evolution of ballistic conidia preceded the evolution of the parasitic lifestyle.Free, publicly-accessible full text available August 1, 2023
-
Studies reveal that the sea-surface temperature (SST) of the Northern Hemisphere decreased at a smaller amplitude than that of the Southern Hemisphere during the Eocene−Oligocene transition (EOT). This interhemispheric temperature asymmetry has been associated with intensified Atlantic Meridional Overturning Circulation (AMOC) that may have driven enhanced precipitation and weathering in low latitudes and the subsequent drawdown of atmospheric carbon dioxide. However, no quantitative constraints on paleo-precipitation have been reported in low latitudes to characterize the AMOC effect across the EOT. Here, we present the results of high-resolution (ca. 6 k.y. per sample) isotopic and biomarker records from the Gulf of Mexico. Reconstructed precipitation using leaf wax carbon isotopes shows an increase of 44% across the EOT (34.1−33.6 Ma), which is accompanied by a secular increase in SST of ∼2 °C during the latest Eocene. We attribute the enhanced precipitation in the Gulf of Mexico to the northward shift of the Intertropical Convergence Zone that was driven by an enlarged polar-tropic temperature gradient in the Southern Hemisphere and an invigorated AMOC. Our findings link changes in meridional temperature gradient and large-scale oceanic circulation to the low-latitude terrestrial hydroclimate and provide paleohydrological evidence that supports CO2-weathering feedback during the EOT “greenhouse” tomore »