skip to main content

Search for: All records

Creators/Authors contains: "Liu, Xiaoming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Dynamic DNA origami nanostructures that respond to external stimuli are promising platforms for cargo delivery and nanoscale sensing. However, the low stability of such nanostructures under physiological conditions presents a major obstacle for their use in biomedical applications. This article describes a stable tetrahedral DNA nanorobot (TDN) programmed to undergo a controlled conformational change in response to epithelial cell adhesion molecule (EpCAM), a molecular biomarker specifically expressed on the circulating tumor cells. Multiresolution molecular dynamics simulations verified the overall stability of the folded TDN design and characterized local distortions in the folded structure. Atomic force microscopy and gel electrophoresis results showed that tetragonal structures are more stable than unfolded DNA origami sheets. Live cell experiments demonstrated the low cytotoxicity and target specificity of TDN. In summary, the proposed TDN can not only effectively resist nuclease catalysis but also has the potential to monitor EpCAM-positive cells precisely. 
    more » « less
  3. null (Ed.)
    In this investigation, the improved electrochemical behavior in Si-doped Li-rich cathodes is studied with scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS). Z-contrast images show a layered structure that develops a thin, spinel-like surface layer after the first charge cycle. Si-doping increases discharge capacity by ∼25% and appears to retard the surface phase transformation. Based on electron energy loss spectra, the surface layer in the doped material has an altered oxygen electronic environment, which supports the STEM findings. Furthermore, Si-doping changes the redox behavior during the activation cycle. Density functional theory calculations indicate that Si-doping can increase oxygen vacancy formation, and change the sequence of the redox couples by introducing more oxygen vacancies before or during the typical high voltage activation process. The results of this work indicate that the type of doping employed here is an effective strategy for controlling the complex charge compensation mechanisms in lithium-rich cathodes. 
    more » « less