skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Liu, Xin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Richard Krutchkoff (Ed.)
    Free, publicly-accessible full text available February 14, 2025
  2. Free, publicly-accessible full text available January 1, 2025
  3. Free, publicly-accessible full text available March 1, 2025

    Jetted active galactic nuclei (AGNs) are the principal extragalactic γ-ray sources. Fermi-detected high-redshift (z > 3) blazars are jetted AGNs thought to be powered by massive, rapidly spinning supermassive black holes (SMBHs) in the early universe (<2 Gyr). They provide a laboratory to study early black hole (BH) growth and super-Eddington accretion – possibly responsible for the more rapid formation of jetted BHs. However, previous virial BH masses of z > 3 blazars were based on C iv λ1549 in the observed optical, but C iv λ1549 is known to be biased by strong outflows. We present new Gemini/GNIRS near-infrared spectroscopy for a sample of nine z > 3 Fermi γ-ray blazars with available multiwavelength observations that maximally sample the spectral energy distributions (SEDs). We estimate virial BH masses based on the better calibrated broad H β and/or Mg ii λ2800. We compare the new virial BH masses against independent mass estimates from SED modelling. Our work represents the first step in campaigning for more robust virial BH masses and Eddington ratios for high-redshift Fermi blazars. Our new results confirm that high-redshift Fermi blazars indeed host overly massive SMBHs as suggested by previous work, which may pose a theoretical challenge for models of the rapid early growth of jetted SMBHs.

    more » « less
  5. Abstract

    Traditional data-driven deep learning models often struggle with high training costs, error accumulation, and poor generalizability in complex physical processes. Physics-informed deep learning (PiDL) addresses these challenges by incorporating physical principles into the model. Most PiDL approaches regularize training by embedding governing equations into the loss function, yet this depends heavily on extensive hyperparameter tuning to weigh each loss term. To this end, we propose to leverage physics prior knowledge by “baking” the discretized governing equations into the neural network architecture via the connection between the partial differential equations (PDE) operators and network structures, resulting in a PDE-preserved neural network (PPNN). This method, embedding discretized PDEs through convolutional residual networks in a multi-resolution setting, largely improves the generalizability and long-term prediction accuracy, outperforming conventional black-box models. The effectiveness and merit of the proposed methods have been demonstrated across various spatiotemporal dynamical systems governed by spatiotemporal PDEs, including reaction-diffusion, Burgers’, and Navier-Stokes equations.

    more » « less
  6. Abstract

    Anomaly detection methods have a great potential to assist the detection of diseases in animal production systems. We used sequence data of Porcine Reproductive and Respiratory Syndrome (PRRS) to define the emergence of new strains at the farm level. We evaluated the performance of 24 anomaly detection methods based on machine learning, regression, time series techniques and control charts to identify outbreaks in time series of new strains and compared the best methods using different time series: PCR positives, PCR requests and laboratory requests. We introduced synthetic outbreaks of different size and calculated the probability of detection of outbreaks (POD), sensitivity (Se), probability of detection of outbreaks in the first week of appearance (POD1w) and background alarm rate (BAR). The use of time series of new strains from sequence data outperformed the other types of data but POD, Se, POD1w were only high when outbreaks were large. The methods based on Long Short-Term Memory (LSTM) and Bayesian approaches presented the best performance. Using anomaly detection methods with sequence data may help to identify the emergency of cases in multiple farms, but more work is required to improve the detection with time series of high variability. Our results suggest a promising application of sequence data for early detection of diseases at a production system level. This may provide a simple way to extract additional value from routine laboratory analysis. Next steps should include validation of this approach in different settings and with different diseases.

    more » « less
    Free, publicly-accessible full text available December 1, 2024
  7. Abstract

    Antimicrobial resistance (AMR) is one of the major challenges of the century and should be addressed with a One Health approach. This study aimed to develop a tool that can provide a better understanding of AMR patterns and improve management practices in swine production systems to reduce its spread between farms. We generated similarity networks based on the phenotypic AMR pattern for each farm with information on important bacterial pathogens for swine farming based on the Euclidean distance. We included seven pathogens:Actinobacillus suis,Bordetella bronchiseptica,Escherichia coli,Glaesserella parasuis,Pasteurella multocida,Salmonellaspp., andStreptococcus suis; and up to seventeen antibiotics from ten classes. A threshold criterion was developed to reduce the density of the networks and generate communities based on their AMR profiles. A total of 479 farms were included in the study although not all bacteria information was available on each farm. We observed significant differences in the morphology, number of nodes and characteristics of pathogen networks, as well as in the number of communities and susceptibility profiles of the pathogens to different antimicrobial drugs. The methodology presented here could be a useful tool to improve health management, biosecurity measures and prioritize interventions to reduce AMR spread in swine farming.

    more » « less
    Free, publicly-accessible full text available December 1, 2024
  8. The adaptive bitrate selection (ABR) mechanism, which decides the bitrate for each video chunk is an important part of video streaming. There has been significant interest in developing Reinforcement-Learning (RL) based ABR algorithms because of their ability to learn efficient bitrate actions based on past data and their demonstrated improvements over wired, 3G and 4G networks. However, the Quality of Experience (QoE), especially video stall time, of state-of-the-art ABR algorithms including the RL-based approaches falls short of expectations over commercial mmWave 5G networks, due to widely and wildly fluctuating throughput. These algorithms find optimal policies for a multi-objective unconstrained problem where the policies inherently depend on the predefined weight parameters of the multiple objectives (e.g., bitrate maximization, stall-time minimization). Our empirical evaluation suggests that such a policy cannot adequately adapt to the high variations of 5G throughput, resulting in long stall times. To address these issues, we formulate the ABR selection problem as a constrained Markov Decision Process where the objective is to maximize the QoE subject to a stall-time constraint. The strength of this formulation is that it helps mitigate the stall time while maintaining high bitrates. We propose COREL, a primal-dual actor-critic RL algorithm, which incorporates an additional critic network to estimate stall time compared to existing RL-based approaches and can tune the optimal dual variable or weight to guide the policy towards minimizing stall time. Our experiment results across various commercial mmWave 5G traces reveal that COREL reduces the average stall time by a factor of 4 and the 95th percentile by a factor of 2. 
    more » « less
  9. Free, publicly-accessible full text available October 1, 2024
  10. Free, publicly-accessible full text available October 1, 2024