skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 24, 2026

Title: Dwarf Active Galactic Nuclei from Variability for the Origins of Seeds (DAVOS): Properties of Variability-selected AGN in the Dark Energy Survey Deep Fields
Abstract We study the black hole mass–host galaxy stellar mass relation,MBH–M*, for a sample of 706z ≲ 1.5 andi ≲ 24 optically variable active galactic nuclei (AGNs) in three Dark Energy Survey (DES) Deep Fields: C3, X3, E2, which partially cover Chandra Deep Field-South, XMM Large Scale Structure survey, and European Large Area ISO Survey, respectively. The parent sample was identified by optical variability from the DES supernova survey program imaging. Using publicly available spectra and photometric catalogs, we consolidate their spectroscopic redshifts, estimate their black hole masses using broad line widths and luminosities, and obtain improved stellar masses using spectral energy distribution fitting from X-ray to mid-infrared wavelengths. Our results confirm previous work from Hyper-Suprime Camera imaging that variability searches with deep, high-precision photometry can reliably identify AGNs in low-mass galaxies up toz ∼ 1. However, we find that the hosted black holes are more massive than predicted by the local AGN relation, fixing host galaxy stellar mass. Instead,z ∼ 0.1–1.5 variability-selected AGNs lie in between theMBH–M*relation for local inactive early-type galaxies and local active galaxies. This result agrees with most previous studies of theMBH–M*relation for AGNs at similar redshifts, regardless of the selection technique. We demonstrate that studies of variability-selected AGN provide critical insights into the low-mass end of theMBH–M*relation, shedding light on the occupation fraction of that provides constraints on early black hole seeding mechanisms and self-regulated feedback processes during their growth and coevolution with their hosts.  more » « less
Award ID(s):
2308077
PAR ID:
10651352
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
AAS Journals
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
994
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
162
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study the black hole mass–host galaxy stellar mass relation,MBH–M*, of a sample ofz< 4 optically variable active galactic nuclei (AGNs) in the COSMOS field. The parent sample of 491 COSMOS AGNs were identified by optical variability from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) program. Using publicly available catalogs and spectra, we consolidate their spectroscopic redshifts and estimate virial black hole masses using broad-line widths and luminosities. We show that variability searches with deep, high-precision photometry like the HSC-SSP can identity AGNs in low-mass galaxies up toz∼ 1. However, their black holes are more massive given their host galaxy stellar masses than predicted by the local relation for active galaxies. We report thatz∼ 0.5–4 variability-selected AGNs are meanwhile more consistent with theMBH–M*relation for local inactive early-type galaxies. This result is in agreement with most previous studies of theMBH–M*relation at similar redshifts and indicates that AGNs selected from variability are not intrinsically different from the broad-line Type 1 AGN population at similar luminosities. Our results demonstrate the need for robust black hole and stellar mass estimates for intermediate-mass black hole candidates in low-mass galaxies at similar redshifts to anchor this scaling relation. Assuming that these results do not reflect a selection bias, they appear to be consistent with self-regulated feedback models wherein the central black hole and stars in galaxies grow in tandem. 
    more » « less
  2. ABSTRACT We present a sample of 706, z < 1.5 active galactic nuclei (AGNs) selected from optical photometric variability in three of the Dark Energy Survey (DES) deep fields (E2, C3, and X3) over an area of 4.64 deg2. We construct light curves using difference imaging aperture photometry for resolved sources and non-difference imaging PSF photometry for unresolved sources, respectively, and characterize the variability significance. Our DES light curves have a mean cadence of 7 d, a 6-yr baseline, and a single-epoch imaging depth of up to g ∼ 24.5. Using spectral energy distribution (SED) fitting, we find 26 out of total 706 variable galaxies are consistent with dwarf galaxies with a reliable stellar mass estimate ($$M_{\ast }\lt 10^{9.5}\, {\rm M}_\odot$$; median photometric redshift of 0.9). We were able to constrain rapid characteristic variability time-scales (∼ weeks) using the DES light curves in 15 dwarf AGN candidates (a subset of our variable AGN candidates) at a median photometric redshift of 0.4. This rapid variability is consistent with their low black hole (BH) masses. We confirm the low-mass AGN nature of one source with a high S/N optical spectrum. We publish our catalogue, optical light curves, and supplementary data, such as X-ray properties and optical spectra, when available. We measure a variable AGN fraction versus stellar mass and compare to results from a forward model. This work demonstrates the feasibility of optical variability to identify AGNs with lower BH masses in deep fields, which may be more ‘pristine’ analogues of supermassive BH seeds. 
    more » « less
  3. null (Ed.)
    ABSTRACT We report the identification of a low-mass active galactic nucleus (AGN), DES J0218−0430, in a redshift z = 0.823 galaxy in the Dark Energy Survey (DES) Supernova field. We select DES J0218−0430 as an AGN candidate by characterizing its long-term optical variability alone based on DES optical broad-band light curves spanning over 6 yr. An archival optical spectrum from the fourth phase of the Sloan Digital Sky Survey shows both broad Mg ii and broad H β lines, confirming its nature as a broad-line AGN. Archival XMM–Newton X-ray observations suggest an intrinsic hard X-ray luminosity of $$L_{{\rm 2-12\, keV}}\approx 7.6\pm 0.4\times 10^{43}$$ erg s−1, which exceeds those of the most X-ray luminous starburst galaxies, in support of an AGN driving the optical variability. Based on the broad H β from SDSS spectrum, we estimate a virial black hole (BH) mass of M• ≈ 106.43–106.72 M⊙ (with the error denoting the systematic uncertainty from different calibrations), consistent with the estimation from OzDES, making it the lowest mass AGN with redshift > 0.4 detected in optical. We estimate the host galaxy stellar mass to be M* ≈ 1010.5 ± 0.3 M⊙ based on modelling the multiwavelength spectral energy distribution. DES J0218−0430 extends the M•–M* relation observed in luminous AGNs at z ∼ 1 to masses lower than being probed by previous work. Our work demonstrates the feasibility of using optical variability to identify low-mass AGNs at higher redshift in deeper synoptic surveys with direct implications for the upcoming Legacy Survey of Space and Time at Vera C. Rubin Observatory. 
    more » « less
  4. Abstract We investigate the relation between black hole (BH) mass and bulge stellar mass for a sample of 117 local (z∼ 0) galaxies hosting low-luminosity, broad-line active galactic nuclei (AGNs). Our sample comes from Reines & Volonteri, who found that, for a given total stellar mass, these AGNs have BH masses more than an order of magnitude smaller than those in early-type galaxies with quiescent BHs. Here, we aim to determine whether or not this AGN sample falls on the canonical BH-to-bulge mass relation by utilizing bulge–disk decompositions and determining bulge stellar masses using color-dependent mass-to-light ratios. We find that our AGN sample remains offset by more than an order of magnitude from theMBH–Mbulgerelation defined by early-type galaxies with dynamically detected BHs. We caution that using canonical BH-to-bulge mass relations for galaxies other than ellipticals and bulge-dominated systems may lead to highly biased interpretations. This work bears directly on predictions for gravitational-wave detections and cosmological simulations that are tied to the local BH-to-bulge mass relations. 
    more » « less
  5. ABSTRACT We present a phenomenological forward Monte Carlo model for forecasting the population of active galactic nuclei (AGNs) in dwarf galaxies observable via their optical variability. Our model accounts for expected changes in the spectral energy distribution of AGNs in the intermediate-mass black hole (IMBH) mass range and uses observational constraints on optical variability as a function of black hole (BH) mass to generate mock light curves. Adopting several different models for the BH occupation function, including one for off-nuclear IMBHs, we quantify differences in the predicted local AGN mass and luminosity functions in dwarf galaxies. As a result, we are able to model the fraction of variable AGNs as a function of important galaxy host properties, such as host galaxy stellar mass, in the presence of selection effects. We find that our adopted occupation fractions for the ‘heavy’ and ‘light’ initial BH seeding scenarios can be distinguished with variability at the 2–3σ level for galaxy host stellar masses below ∼108M⊙ with data from the upcoming Vera C. Rubin Observatory. We also demonstrate the prevalence of a selection bias whereby recovered IMBH masses fall, on average, above the predicted value from the local host galaxy–BH mass scaling relation with the strength of this bias dependent on the survey sensitivity. Our methodology can be used more broadly to calibrate AGN demographic studies in synoptic surveys. Finally, we show that a targeted ∼ hourly cadence program over a few nights with the Rubin Observatory can provide strong constraints on IMBH masses given their expected rapid variability time-scales. 
    more » « less