skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Xinyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 2, 2026
  2. Copper (Cu) interconnects are an increasingly important bottleneck in integrated circuits due to energy consumption and latency caused by the notable increase in Cu resistivity as dimensions decrease, primarily due to electron scattering at surfaces. Herein, the potential of a directional conductor, PtCoO2, which has a low bulk resistivity and a distinctive anisotropic structure that mitigates electron surface scattering is showcased. Thin films of PtCoO2of various thicknesses are synthesized by molecular beam epitaxy (MBE) coupled with a postdeposition annealing process and the superior quality of PtCoO2films is demonstrated by multiple characterization techniques. The thickness‐dependent resistivity curve illustrates that PtCoO2significantly outperforms effective Cu (Cu with TaN barriers) and Ru in resistivity below 20.0 nm with a more than 6x reduction compared to effective Cu below 6.0 nm, having a value of only 6.32 μΩ cm at 3.3 nm. It is determined that grain boundary scattering can still be improved for even lower resistivities in this material system through a combination of experiments and theoretical simulations. PtCoO2is therefore a highly promising alternative material for future interconnect technologies promising lower resistivities, better stability, and significant improvements in energy efficiency and latency for advanced integrated circuits. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  3. User-defined functions (UDFs) are widely used to enhance the ca- pabilities of DBMSs. However, using UDFs comes with a significant performance penalty because DBMSs treat UDFs as black boxes, which hinders their ability to optimize queries that invoke such UDFs. To mitigate this problem, in this paper we present LAMBDA, a technique and framework for improving DBMSs’ performance in the presence of UDFs. The core idea of LAMBDA is to statically infer properties of UDFs that facilitate UDF processing. Taking one such property as an example, if DBMSs know that a UDF is pure, that is it returns the same result given the same arguments, they can leverage a cache to avoid repetitive UDF invocations that have the same call arguments. We reframe the problem of analyzing UDF properties as a data flow problem. We tackle the data flow problem by building LAMBDA on top of an extensible abstract interpretation framework and de- veloping an analysis model that is tailored for UDFs. Currently, LAMBDA supports inferring four properties from UDFs that are widely used across DBMSs. We evaluate LAMBDA on a benchmark that is derived from production query workloads and UDFs. Our evaluation results show that (1) LAMBDA conservatively and ef- ficiently infers the considered UDF properties, and (2) inferring such properties improves UDF performance, with a time reduction ranging from 10% to 99%. In addition, when applied to 20 produc- tion UDFs, LAMBDA caught five instances in which developers provided incorrect UDF property annotations. We qualitatively compare LAMBDA against Froid, a state-of-the-art framework for improving UDF performance, and explain how LAMBDA can opti- mize UDFs that are not supported by Froid. 
    more » « less
  4. The Ediacaran Period marks a pivotal time in geodynamo evolution when the geomagnetic field is thought to approach the weak state where kinetic energy exceeds magnetic energy, as manifested by an extremely high frequency of polarity reversals, high secular variation, and an ultralow dipole field strength. However, how the geodynamo transitioned from this state into one with more stable field behavior is unknown. Here, we address this issue through a high-resolution magnetostratigraphic investigation of the ~494.5 million-year-old Jiangshanian Global Standard Stratotype and Point (GSSP) section in South China. Our paleomagnetic results document zones with rapid reversals, stable polarity and a ~80 thousand-year-long interval without a geocentric axial dipole field. From these changes, we suggest that for most of the Cambrian, the solid inner core had not yet grown to a size sufficiently large to stabilize the geodynamo. This unusual field behavior can explain paleomagnetic data used to define paradoxical true polar wander, supporting instead the rotational stability of the solid Earth during the great radiation of life in the Cambrian. 
    more » « less