skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Liu, Yu-Sheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work probed the thermal “switchability” from ethylene coordination/insertion to controlled radical polymerization of methyl acrylate (MA) for Brookhart-type α-diimine PdII catalysts. The investigation focused on the extremely bulky 2,6-bis(3,5-dimethylphenyl)-4-methylphenyl (Xyl4Ph) α-diimine N-substituents to probe reversible PdII–C bond activation in the MA-quenched Pd-capped PE intermediate and reversible trapping during radical MA polymerization. The substituent steric effect on the relative stability of various [PE–MA–PdII(ArN═CMeCMe═NAr)]+ chain-end structures and on the bond dissociation-free energy (BDFE) for the homolytic PdII–C bond cleavage has been assessed by DFT calculations at the full quantum mechanics (QM) and QM/molecular mechanics (QM/MM) methods. The structures comprise ester-chelated forms with the Pd atom bonded to the α, β, and γ C atoms as a result of 2,1 MA insertion into the PE–Pd bond and of subsequent chain walking, as well as related monodentate (ring-opened) forms resulting from the addition of MA or acetonitrile. The opened Cα-bonded form is electronically favored for smaller N-substituents, including 2,6-diisopropylphenyl (Dipp), particularly when MeCN is added, but the open Cγ-bonded form is preferred for the extremely bulky system with Ar = Xyl4Ph. The Pdα–C bond is the weakest one to cleave, with the BDFE decreasing as the Ar steric bulk is increased (31.8, 25.8, and 12.6 kcal mol–1 for Ph, Dipp, and Xyl4Ph, respectively). However, experimental investigations on the [PE–MA–PdII(ArN═CMeCMe═NAr)]+ (Ar = Xyl4Ph) macroinitiator do not show any evidence of radical formation under thermal activation conditions, while photolytic activation produces both TEMPO-trapped (TEMPO = 2,2,6,6-tetramethylpiperidinyloxy) and unsaturated MA-containing PE chains. The DFT investigation has highlighted a low-energy pathway for termination of the PE–MA• radicals by disproportionation, promoted by β-H elimination/dissociation and H-atom abstraction from the PdII–H intermediate by a second radical. This phenomenon appears to be the main reason for the failure of this PdII system to control the radical polymerization of MA by the OMRP (OMRP = organometallic-mediated radical polymerization) mechanism. 
    more » « less
    Free, publicly-accessible full text available August 10, 2024
  2. Cloud-native microservice applications use different communication paradigms to network microservices, including both synchronous and asynchronous I/O for exchanging data. Existing solutions depend on kernel-based networking, incurring significant overheads. The interdependence between microservices for these applications involves considerable communication, including contention between multiple concurrent flows or user sessions. In this paper, we design X-IO, a high-performance unified I/O interface that is built on top of shared memory processing with lock-free producer/consumer rings, eliminating kernel networking overheads and contention. X-IO offers a feature-rich interface. X-IO’s zero-copy interface supports building provides truly zero-copy data transfers between microservices, achieving high performance. X-IO also provides a POSIX-like socket interface using HTTP/REST API to achieve seamless porting of microservices to X-IO, without any change to the application code. X-IO supports concurrent connections for microservices that require distinct user sessions operating in parallel. Our preliminary experimental results show that X-IO’s zero-copy interfaces achieve 2.8x-4.1x performance improvement compared to kernel-based interfaces. Its socket interfaces outperform kernel TCP sockets and achieve performance close to UNIX-domain sockets. The HTTP/REST APIs in X-IO perform 1.4 x-2.3 x better than kernel-based alternatives with concurrent connections. 
    more » « less
  3. Within the large momentum effective theory framework, we report the results of the first direct lattice-QCD calculation of the valence quark distribution in the pion. Our results are comparable quantitatively with the results extracted from experimental data as well as from Dyson-Schwinger equation. Future calculations at physical pion mass and larger momentum will be able to discern discrepancies in various existing analyses. 
    more » « less
  4. We present a state-of-the-art calculation of the isovector quark helicity Bjorken-$x$ distribution in the proton using lattice-QCD ensembles at the physical pion mass. We compute quasi-distributions at proton momenta $P_z \in \{2.2, 2.6, 3.0\}$~GeV on the lattice, and match them systematically to the physical parton distribution using large-momentum effective theory (LaMET). We reach an unprecedented precision through high statistics in simulations, large-momentum proton matrix elements, and control of excited-state contamination. The resulting distribution is in agreement within $2\sigma$ with the latest phenomenological analysis of the spin-dependent experimental data; in particular, $\Delta \bar{u}(x)>\Delta \bar{d}(x)$. 
    more » « less