skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Direct lattice-QCD calculation of pion valence quark distribution
Within the large momentum effective theory framework, we report the results of the first direct lattice-QCD calculation of the valence quark distribution in the pion. Our results are comparable quantitatively with the results extracted from experimental data as well as from Dyson-Schwinger equation. Future calculations at physical pion mass and larger momentum will be able to discern discrepancies in various existing analyses.  more » « less
Award ID(s):
1653405
PAR ID:
10097099
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
The 36th Annual International Symposium on Lattice Field Theory (LATTICE2018)
Volume:
334
Page Range / eLocation ID:
108
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We present the first determination of the x-dependent pion gluon distribution from lattice QCD using the pseudo-PDF approach. We use lattice ensembles with 2+1+1 flavors of highly improved staggered quarks (HISQ), generated by MILC Collaboration, at two lattice spacings a≈0.12 and 0.15~fm and three pion masses Mπ≈220, 310 and 690 MeV. We use clover fermions for the valence action and momentum smearing to achieve pion boost momentum up to 2.29 GeV. We find that the dependence of the pion gluon parton distribution on lattice spacing and pion mass is mild. We compare our results from the lightest pion mass ensemble with the determination by JAM and xFitter global fits. 
    more » « less
  2. We present a measurement of neutral pion production in charged-current interactions using data recorded with the MicroBooNE detector exposed to Fermilab’s booster neutrino beam. The signal comprises one muon, one neutral pion, any number of nucleons, and no charged pions. Studying neutral pion production in the MicroBooNE detector provides an opportunity to better understand neutrino-argon interactions, and is crucial for future accelerator-based neutrino oscillation experiments. Using a dataset corresponding to 6.86 × 10 20 protons on target, we present single-differential cross sections in muon and neutral pion momenta, scattering angles with respect to the beam for the outgoing muon and neutral pion, as well as the opening angle between the muon and neutral pion. Data extracted cross sections are compared to generator predictions. We report good agreement between the data and the models for scattering angles, except for an over-prediction by generators at muon forward angles. Similarly, the agreement between data and the models as a function of momentum is good, except for an underprediction by generators in the medium momentum ranges, 200–400 MeV for muons and 100–200 MeV for pions. Published by the American Physical Society2024 
    more » « less
  3. null (Ed.)
    Abstract Using deep convolutional neural network (CNN), the nature of the QCD transition can be identified from the final-state pion spectra from hybrid model simulations of heavy-ion collisions that combines a viscous hydrodynamic model with a hadronic cascade “after-burner”. Two different types of equations of state (EoS) of the medium are used in the hydrodynamic evolution. The resulting spectra in transverse momentum and azimuthal angle are used as the input data to train the neural network to distinguish different EoS. Different scenarios for the input data are studied and compared in a systematic way. A clear hierarchy is observed in the prediction accuracy when using the event-by-event, cascade-coarse-grained and event-fine-averaged spectra as input for the network, which are about 80%, 90% and 99%, respectively. A comparison with the prediction performance by deep neural network (DNN) with only the normalized pion transverse momentum spectra is also made. High-level features of pion spectra captured by a carefully-trained neural network were found to be able to distinguish the nature of the QCD transition even in a simulation scenario which is close to the experiments. 
    more » « less
  4. Abstract We present a state-of-the-art calculation of the unpolarized pion valence-quark distribution in the framework of large-momentum effective theory (LaMET) with improved handling of systematic errors as well as two-loop perturbative matching. We use lattice ensembles generated by the MILC collaboration at lattice spacinga≈ 0.09 fm, lattice volume 643× 96,Nf= 2 + 1 + 1 flavors of highly-improved staggered quarks and a physical pion mass. The LaMET matrix elements are calculated with pions boosted to momentumPz≈ 1.72 GeV with high-statistics ofO(106) measurements. We study the pion PDF in both hybrid-ratio and hybrid-regularization-independent momentum subtraction (hybrid-RI/MOM) schemes and also compare the systematic errors with and without the addition of leading-renormalon resummation (LRR) and renormalization-group resummation (RGR) in both the renormalization and lightcone matching. The final lightcone PDF results are presented in the modified minimal-subtraction scheme at renormalization scaleμ= 2.0 GeV. We show that thex-dependent PDFs are compatible between the hybrid-ratio and hybrid-RI/MOM renormalization with the same improvements. We also show that systematics are greatly reduced by the simultaneous inclusion of RGR and LRR and that these methods are necessary if improved precision is to be reached with higher-order terms in renormalization and matching. 
    more » « less
  5. A<sc>bstract</sc> In this work, we report a lattice calculation ofx-dependent valence pion generalized parton distributions (GPDs) at zero skewness with multiple values of the momentum transfer −t. The calculations are based on anNf= 2 + 1 gauge ensemble of highly improved staggered quarks with Wilson-Clover valence fermion. The lattice spacing is 0.04 fm, and the pion valence mass is tuned to be 300 MeV. We determine the Lorentz-invariant amplitudes of the quasi-GPD matrix elements for both symmetric and asymmetric momenta transfers with similar values and show the equivalence of both frames. Then, focusing on the asymmetric frame, we utilize a hybrid scheme to renormalize the quasi-GPD matrix elements obtained from the lattice calculations. After the Fourier transforms, the quasi-GPDs are then matched to the light-cone GPDs within the framework of large momentum effective theory with improved matching, including the next-to-next-to-leading order perturbative corrections, and leading renormalon and renormalization group resummations. We also present the 3-dimensional image of the pion in impact-parameter space through the Fourier transform of the momentum transfer −t. 
    more » « less