skip to main content


Title: Direct lattice-QCD calculation of pion valence quark distribution
Within the large momentum effective theory framework, we report the results of the first direct lattice-QCD calculation of the valence quark distribution in the pion. Our results are comparable quantitatively with the results extracted from experimental data as well as from Dyson-Schwinger equation. Future calculations at physical pion mass and larger momentum will be able to discern discrepancies in various existing analyses.  more » « less
Award ID(s):
1653405
NSF-PAR ID:
10097099
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
The 36th Annual International Symposium on Lattice Field Theory (LATTICE2018)
Volume:
334
Page Range / eLocation ID:
108
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We present the first determination of the x-dependent pion gluon distribution from lattice QCD using the pseudo-PDF approach. We use lattice ensembles with 2+1+1 flavors of highly improved staggered quarks (HISQ), generated by MILC Collaboration, at two lattice spacings a≈0.12 and 0.15~fm and three pion masses Mπ≈220, 310 and 690 MeV. We use clover fermions for the valence action and momentum smearing to achieve pion boost momentum up to 2.29 GeV. We find that the dependence of the pion gluon parton distribution on lattice spacing and pion mass is mild. We compare our results from the lightest pion mass ensemble with the determination by JAM and xFitter global fits. 
    more » « less
  2. Understanding the strong interaction dynamics that govern the emergence of hadron mass (EHM) represents a challenging open problem in the Standard Model. In this paper we describe new opportunities for gaining insight into EHM from results on nucleon resonance (N*) electroexcitation amplitudes (i.e., γvpN* electrocouplings) in the mass range up to 1.8 GeV for virtual photon four-momentum squared (i.e., photon virtualities Q2) up to 7.5 GeV2 available from exclusive meson electroproduction data acquired during the 6-GeV era of experiments at Jefferson Laboratory (JLab). These results, combined with achievements in the use of continuum Schwinger function methods (CSMs), offer new opportunities for charting the momentum dependence of the dressed quark mass from results on the Q2-evolution of the γvpN* electrocouplings. This mass function is one of the three pillars of EHM and its behavior expresses influences of the other two, viz. the running gluon mass and momentum-dependent effective charge. A successful description of the Δ(1232)3/2+ and N(1440)1/2+ electrocouplings has been achieved using CSMs with, in both cases, common momentum-dependent mass functions for the dressed quarks, for the gluons, and the same momentum-dependent strong coupling. The properties of these functions have been inferred from nonperturbative studies of QCD and confirmed, e.g., in the description of nucleon and pion elastic electromagnetic form factors. Parameter-free CSM predictions for the electrocouplings of the Δ(1600)3/2+ became available in 2019. The experimental results obtained in the first half of 2022 have confirmed the CSM predictions. We also discuss prospects for these studies during the 12-GeV era at JLab using the CLAS12 detector, with experiments that are currently in progress, and canvass the physics motivation for continued studies in this area with a possible increase of the JLab electron beam energy up to 22 GeV. Such an upgrade would finally enable mapping of the dressed quark mass over the full range of distances (i.e., quark momenta) where the dominant part of hadron mass and N* structure emerge in the transition from the strongly coupled to perturbative QCD regimes. 
    more » « less
  3. Abstract

    We present a state-of-the-art calculation of the unpolarized pion valence-quark distribution in the framework of large-momentum effective theory (LaMET) with improved handling of systematic errors as well as two-loop perturbative matching. We use lattice ensembles generated by the MILC collaboration at lattice spacinga≈ 0.09 fm, lattice volume 643× 96,Nf= 2 + 1 + 1 flavors of highly-improved staggered quarks and a physical pion mass. The LaMET matrix elements are calculated with pions boosted to momentumPz≈ 1.72 GeV with high-statistics ofO(106) measurements. We study the pion PDF in both hybrid-ratio and hybrid-regularization-independent momentum subtraction (hybrid-RI/MOM) schemes and also compare the systematic errors with and without the addition of leading-renormalon resummation (LRR) and renormalization-group resummation (RGR) in both the renormalization and lightcone matching. The final lightcone PDF results are presented in the modified minimal-subtraction scheme at renormalization scaleμ= 2.0 GeV. We show that thex-dependent PDFs are compatible between the hybrid-ratio and hybrid-RI/MOM renormalization with the same improvements. We also show that systematics are greatly reduced by the simultaneous inclusion of RGR and LRR and that these methods are necessary if improved precision is to be reached with higher-order terms in renormalization and matching.

     
    more » « less
  4. null (Ed.)
    Abstract The first measurement of the production of pions, kaons, (anti-)protons and $$\phi $$ ϕ mesons at midrapidity in Xe–Xe collisions at $$\sqrt{s_{\mathrm{NN}}} = 5.44~\text {TeV}$$ s NN = 5.44 TeV is presented. Transverse momentum ( $$p_{\mathrm{T}}$$ p T ) spectra and $$p_{\mathrm{T}}$$ p T -integrated yields are extracted in several centrality intervals bridging from p–Pb to mid-central Pb–Pb collisions in terms of final-state multiplicity. The study of Xe–Xe and Pb–Pb collisions allows systems at similar charged-particle multiplicities but with different initial geometrical eccentricities to be investigated. A detailed comparison of the spectral shapes in the two systems reveals an opposite behaviour for radial and elliptic flow. In particular, this study shows that the radial flow does not depend on the colliding system when compared at similar charged-particle multiplicity. In terms of hadron chemistry, the previously observed smooth evolution of particle ratios with multiplicity from small to large collision systems is also found to hold in Xe–Xe. In addition, our results confirm that two remarkable features of particle production at LHC energies are also valid in the collision of medium-sized nuclei: the lower proton-to-pion ratio with respect to the thermal model expectations and the increase of the $$\phi $$ ϕ -to-pion ratio with increasing final-state multiplicity. 
    more » « less
  5. null (Ed.)
    Abstract Using deep convolutional neural network (CNN), the nature of the QCD transition can be identified from the final-state pion spectra from hybrid model simulations of heavy-ion collisions that combines a viscous hydrodynamic model with a hadronic cascade “after-burner”. Two different types of equations of state (EoS) of the medium are used in the hydrodynamic evolution. The resulting spectra in transverse momentum and azimuthal angle are used as the input data to train the neural network to distinguish different EoS. Different scenarios for the input data are studied and compared in a systematic way. A clear hierarchy is observed in the prediction accuracy when using the event-by-event, cascade-coarse-grained and event-fine-averaged spectra as input for the network, which are about 80%, 90% and 99%, respectively. A comparison with the prediction performance by deep neural network (DNN) with only the normalized pion transverse momentum spectra is also made. High-level features of pion spectra captured by a carefully-trained neural network were found to be able to distinguish the nature of the QCD transition even in a simulation scenario which is close to the experiments. 
    more » « less