skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Yun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wearable devices have made transformative advancements driven by the integration of nanomaterials, enhancing their versatility, sensitivity, and overall performance. The emerging 3D printing techniques revolutionize traditional fabrication, enabling the high-efficiency fabrication for sophisticated and miniaturized healthcare monitoring systems. This review summarizes the essential properties of nanomaterials and their roles in 3D printing and examines the pros and cons of various 3D printing methods. Key applications of 3D-printed wearable devices, showcasing the synergistic contributions of nanomaterials, are introduced to provide a comprehensive overview of the state-of-the-art progress and the promising prospects for next-generation healthcare monitoring. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Adaptability is a distinguishing feature of the human species: We thrive as hunter-gatherers, farmers, and urbanites. What properties of our brains make us highly adaptable? Here we review neuroscience studies of sensory loss, language acquisition, and cultural skills (reading, mathematics, programming). The evidence supports a flexible specialization account. On the one hand, adaptation is enabled by evolutionarily prepared flexible learning systems, both domain-specific social learning systems (e.g., language) and domain-general systems (frontoparietal reasoning). On the other hand, the functional flexibility of our neural wetware enables us to acquire cognitive capacities not selected for by evolution. Heightened plasticity during a protracted period of development enhances cognitive flexibility. Early in life, local cortical circuits are capable of acquiring a wide range of cognitive capacities. Exuberant cross-network connectivity makes it possible to combine old neural parts in new ways, enabling cognitive flexibility such as language acquisition across modalities (spoken, signed, braille) and cultural skills (math, programming). Together, these features of the human brain make it uniquely adaptable. 
    more » « less
    Free, publicly-accessible full text available December 31, 2025
  3. Free, publicly-accessible full text available January 9, 2026
  4. This paper presents a study on the effectiveness of two turbulence models, the large eddy simulation (LES) model and the k-ε turbulence model, in predicting mixing time within a ladle furnace using the computational fluid dynamics (CFD) technique. The CFD model was developed based on a downscaled water ladle from an industrial ladle. Corresponding experiments were conducted to provide insights into the flow field, which were used for the validation of CFD simulations. The correlation between the flow structure and turbulence kinetic energy in relation to mixing time was investigated. Flow field results indicated that both turbulence models aligned well with time-averaged velocity data from the experiments. However, the LES model not only offered a closer match in magnitude but also provided a more detailed representation of turbulence eddies. With respect to predicting mixing time, increased flow rates resulted in extended mixing times in both turbulence models. However, the LES model consistently projected longer mixing times due to its capability to capture a more intricate distribution of turbulence eddies. 
    more » « less
  5. Wearable sweat biosensors have shown great progress in noninvasive, in situ, and continuous health monitoring to demonstrate individuals’ physiological states. Advances in novel nanomaterials and fabrication methods promise to usher in a new era of wearable biosensors. Here, we introduce a threedimensional (3D)-printed flexible wearable health monitor fabricated through a unique one-step continuous manufacturing process with self-supporting microfluidic channels and novel single-atom catalyst-based bioassays for measuring the sweat rate and concentration of three biomarkers. Direct ink writing is adapted to print the microfluidic device with self-supporting structures to harvest human sweat, which eliminates the need for removing sacrificial supporting materials and addresses the contamination and sweat evaporation issues associated with traditional sampling methods. Additionally, the pick-and-place strategy is employed during the printing process to accurately integrate the bioassays, improving manufacturing efficiency. A single-atom catalyst is developed and utilized in colorimetric bioassays to improve sensitivity and accuracy. A feasibility study on human skin successfully demonstrates the functionality and reliability of our health monitor, generating reliable and quantitative in situ results of sweat rate, glucose, lactate, and uric acid concentrations during physical exercise. 
    more » « less
  6. Ladle metallurgy serves as a crucial component of the steelmaking industry, where it plays a pivotal role in manipulating the molten steel to exercise precise control over its composition and properties. Turbulence in ladle metallurgy influences various important aspects of the steelmaking process, including mixing and distribution of additives, alongside the transport and removal of inclusions within the ladle. Consequently, gaining a clear understanding of the stirred flow field holds the potential of optimizing ladle design, improving control strategies, and enhancing the overall efficiency and steel quality. In this project, an advanced Particle-Tracking-Velocimetry system known as “Shake-the-Box” is implemented on a cylindrical water ladle model while compressed air injections through two circular plugs positioned at the bottom of the model are employed to actively stir the flow. To mitigate the particle images distortion caused by the cylindrical plexi-glass walls, the method of refractive matching is utilized with an outer polygon tank filled with a sodium iodide solution. The volumetric flow measurement is achieved on a 6 × 6 × 2 cm domain between the two plugs inside the cylindrical container while the flow rate of gas injection is set from 0.1 to 0.4 L per minute. The volumetric flow field result suggests double gas injection at low flow rate (0.1 L per minute) produce the least disturbed flow while highly disturbed and turbulent flow can be created at higher flow rate of gas injection. 
    more » « less
  7. Abstract Magnetic fields are uniquely valuable for creating colloidal nanostructured materials, not only providing a means for controlled synthesis but also guiding their self‐assembly into distinct superstructures. In this study, a magnetothermal process for synthesizing hybrid nanostructures comprising ferrimagnetic magnetite nanorods coated with fluorescent perovskite nanocrystals is reported and their magnetic assembly into superstructures capable of emitting linear and circularly polarized light are demonstrated. Under UV excitation, the superstructures assembled in a liner magnetic field produce linear polarized luminescence, and those assembled in a chiral magnetic field exhibit strong circularly polarized luminescence (CPL) with aglumvalue up to 0.44 (±0.004). The CPL is believed to originate from the dipolar interaction between neighboring perovskite nanocrystals attached to the chiral assemblies and the chiral‐selective absorption of the perovskite emission by the magnetite phase. The magnetic synthesis and assembly approaches and the resulting distinctive chiral superstructures are anticipated to open up new avenues for designing diverse functional chiroptical devices. 
    more » « less
  8. Free, publicly-accessible full text available May 13, 2026