Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Binary neutron star mergers produce high-energy emissions from several physically different sources, including a gamma-ray burst (GRB) and its afterglow, a kilonova (KN), and, at late times, a remnant many parsecs in size. Ionizing radiation from these sources can be dangerous for life on Earth-like planets when located too close. Work to date has explored the substantial danger posed by the GRB to on-axis observers; here we focus instead on the potential threats posed to nearby off-axis observers. Our analysis is based largely on observations of the GW170817/GRB 170817A multi-messenger event, as well as theoretical predictions. For baseline KN parameters, we find that the X-ray emission from the afterglow may be lethal out to ∼1 pc and the off-axis gamma-ray emission may threaten a range out to ∼4 pc, whereas the greatest threat comes years after the explosion, from the cosmic rays accelerated by the KN blast, which can be lethal out to distances up to ∼11 pc. The distances quoted here are typical, but the values have significant uncertainties and depend on the viewing angle, ejected mass, and explosion energy in ways we quantify. Assessing the overall threat to Earth-like planets, KNe have a similar kill distance to supernovae, but are far less common. However, our results rely on the scant available KN data, and multi-messenger observations will clarify the danger posed by such events.more » « less
-
Abstract 244Pu has recently been discovered in deep-sea deposits spanning the past 10 Myr, a period that includes two60Fe pulses from nearby supernovae.244Pu is among the heaviestr-process products, and we consider whether it was created in supernovae, which is disfavored by nucleosynthesis simulations, or in an earlier kilonova event that seeded the nearby interstellar medium with244Pu that was subsequently swept up by the supernova debris. We discuss how these possibilities can be probed by measuring244Pu and otherr-process radioisotopes such as129I and182Hf, both in lunar regolith samples returned to Earth by missions such as Chang’e and Artemis, and in deep-sea deposits.more » « less
-
Abstract The astrophysical sites where r -process elements are synthesized remain mysterious: it is clear that neutron star mergers (kilonovae (KNe)) contribute, and some classes of core-collapse supernovae (SNe) are also possible sources of at least the lighter r -process species. The discovery of 60 Fe on the Earth and Moon implies that one or more astrophysical explosions have occurred near the Earth within the last few million years, probably SNe. Intriguingly, 244 Pu has now been detected, mostly overlapping with 60 Fe pulses. However, the 244 Pu flux may extend to before 12 Myr ago, pointing to a different origin. Motivated by these observations and difficulties for r -process nucleosynthesis in SN models, we propose that ejecta from a KN enriched the giant molecular cloud that gave rise to the Local Bubble, where the Sun resides. Accelerator mass spectrometry (AMS) measurements of 244 Pu and searches for other live isotopes could probe the origins of the r -process and the history of the solar neighborhood, including triggers for mass extinctions, e.g., that at the end of the Devonian epoch, motivating the calculations of the abundances of live r -process radioisotopes produced in SNe and KNe that we present here. Given the presence of 244 Pu, other r -process species such as 93 Zr, 107 Pd, 129 I, 135 Cs, 182 Hf, 236 U, 237 Np, and 247 Cm should be present. Their abundances and well-resolved time histories could distinguish between the SN and KN scenarios, and we discuss prospects for their detection in deep-ocean deposits and the lunar regolith. We show that AMS 129 I measurements in Fe–Mn crusts already constrain a possible nearby KN scenario.more » « less