skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Loewenstein, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract An accretion disk formed around a supermassive black hole after it disrupts a star is expected to be initially misaligned with respect to the equatorial plane of the black hole. This misalignment induces relativistic torques (the Lense–Thirring effect) on the disk, causing the disk to precess at early times, whereas at late times the disk aligns with the black hole and precession terminates1,2. Here we report, using high-cadence X-ray monitoring observations of a tidal disruption event (TDE), the discovery of strong, quasi-periodic X-ray flux and temperature modulations. These X-ray modulations are separated by roughly 15 days and persist for about 130 days during the early phase of the TDE. Lense–Thirring precession of the accretion flow can produce this X-ray variability, but other physical mechanisms, such as the radiation-pressure instability3,4, cannot be ruled out. Assuming typical TDE parameters, that is, a solar-like star with the resulting disk extending at most to the so-called circularization radius, and that the disk precesses as a rigid body, we constrain the disrupting dimensionless spin parameter of the black hole to be 0.05 ≲ ∣a∣ ≲ 0.5. 
    more » « less
  2. Abstract Neutron Star Interior Composition Explorer has a comparatively low background rate, but it is highly variable, and its spectrum must be predicted using measurements unaffected by the science target. We describe an empirical, three-parameter model based on observations of seven pointing directions that are void of detectable sources. Two model parameters track different types of background events, while the third is used to predict a low-energy excess tied to observations conducted in sunlight. An examination of 3556 good time intervals (GTIs), averaging 570 s, yields a median rate (0.4–12 keV; 50 detectors) of 0.87 c s −1 , but in 5% (1%) of cases, the rate exceeds 10 (300) c s −1 . Model residuals persist at 20%–30% of the initial rate for the brightest GTIs, implying one or more missing model parameters. Filtering criteria are given to flag GTIs likely to have unsatisfactory background predictions. With such filtering, we estimate a detection limit, 1.20 c s −1 (3 σ , single GTI) at 0.4–12 keV, equivalent to 3.6 × 10 −12 erg cm −2 s −1 for a Crab-like spectrum. The corresponding limit for soft X-ray sources is 0.51 c s −1 at 0.3–2.0 keV, or 4.3 × 10 −13 erg cm −2 s −1 for a 100 eV blackbody. These limits would be four times lower if exploratory GTIs accumulate 10 ks of data after filtering at the level prescribed for faint sources. Such filtering selects background GTIs 85% of the time. An application of the model to a 1 s timescale makes it possible to distinguish source flares from possible surges in the background. 
    more » « less
  3. Abstract  We present the first results from a 100-day Swift, NICER, and ground-based X-ray–UV–optical reverberation mapping campaign of the Narrow-line Seyfert 1 Mrk 335, when it was in an unprecedented low X-ray flux state. Despite dramatic suppression of the X-ray variability, we still observe UV–optical lags as expected from disk reverberation. Moreover, the UV–optical lags are consistent with archival observations when the X-ray luminosity was >10 times higher. Interestingly, both low- and high-flux states reveal UV–optical lags that are 6–11 times longer than expected from a thin disk. These long lags are often interpreted as due to contamination from the broad line region; however theu-band excess lag (containing the Balmer jump from the diffuse continuum) is less prevalent than in other active galactic nuclei. The Swift campaign showed a low X-ray-to-optical correlation (similar to previous campaigns), but NICER and ground-based monitoring continued for another 2 weeks, during which the optical rose to the highest level of the campaign, followed ∼10 days later by a sharp rise in X-rays. While the low X-ray countrate and relatively large systematic uncertainties in the NICER background make this measurement challenging, if the optical does lead X-rays in this flare, this indicates a departure from the zeroth-order reprocessing picture. If the optical flare is due to an increase in mass accretion rate, this occurs on much shorter than the viscous timescale. Alternatively, the optical could be responding to an intrinsic rise in X-rays that is initially hidden from our line of sight. 
    more » « less