skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Long Chen, Yuan Yao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Collaborative filtering has been widely used in recommender systems. Existing work has primarily focused on improving the prediction accuracy mainly via either building refined models or incorporating additional side information, yet has largely ignored the inherent distribution of the input rating data. In this paper, we propose a data debugging framework to identify overly personalized ratings whose existence degrades the performance of a given collaborative filtering model. The key idea of the proposed approach is to search for a small set of ratings whose editing (e.g., modification or deletion) would near-optimally improve the recommendation accuracy of a validation set. Experimental results demonstrate that the proposed approach can significantly improve the recommendation accuracy. Furthermore, we observe that the identified ratings significantly deviate from the average ratings of the corresponding items, and the proposed approach tends to modify them towards the average. This result sheds light on the design of future recommender systems in terms of balancing between the overall accuracy and personalization. 
    more » « less