skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: Trading Personalization for Accuracy: Data Debugging in Collaborative Filtering
Collaborative filtering has been widely used in recommender systems. Existing work has primarily focused on improving the prediction accuracy mainly via either building refined models or incorporating additional side information, yet has largely ignored the inherent distribution of the input rating data. In this paper, we propose a data debugging framework to identify overly personalized ratings whose existence degrades the performance of a given collaborative filtering model. The key idea of the proposed approach is to search for a small set of ratings whose editing (e.g., modification or deletion) would near-optimally improve the recommendation accuracy of a validation set. Experimental results demonstrate that the proposed approach can significantly improve the recommendation accuracy. Furthermore, we observe that the identified ratings significantly deviate from the average ratings of the corresponding items, and the proposed approach tends to modify them towards the average. This result sheds light on the design of future recommender systems in terms of balancing between the overall accuracy and personalization.  more » « less
Award ID(s):
1939725 1947135
NSF-PAR ID:
10232456
Author(s) / Creator(s):
Date Published:
Journal Name:
NeuIPS
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recommender system data presents unique challenges to the data mining, machine learning, and algorithms communities. The high missing data rate, in combination with the large scale and high dimensionality that is typical of recommender systems data, requires new tools and methods for efficient data analysis. Here, we address the challenge of evaluating similarity between two users in a recommender system, where for each user only a small set of ratings is available. We present a new similarity score, that we call LiRa, based on a statistical model of user similarity, for large-scale, discrete valued data with many missing values. We show that this score, based on a ratio of likelihoods, is more effective at identifying similar users than traditional similarity scores in user-based collaborative filtering, such as the Pearson correlation coefficient. We argue that our approach has significant potential to improve both accuracy and scalability in collaborative filtering. 
    more » « less
  2. null (Ed.)
    Item-based models are among the most popular collaborative filtering approaches for building recommender systems. Random walks can provide a powerful tool for harvesting the rich network of interactions captured within these models. They can exploit indirect relations between the items, mitigate the effects of sparsity, ensure wider itemspace coverage, as well as increase the diversity of recommendation lists. Their potential however, can be hindered by the tendency of the walks to rapidly concentrate towards the central nodes of the graph, thereby significantly restricting the range of K -step distributions that can be exploited for personalized recommendations. In this work, we introduce RecWalk ; a novel random walk-based method that leverages the spectral properties of nearly uncoupled Markov chains to provably lift this limitation and prolong the influence of users’ past preferences on the successive steps of the walk—thereby allowing the walker to explore the underlying network more fruitfully. A comprehensive set of experiments on real-world datasets verify the theoretically predicted properties of the proposed approach and indicate that they are directly linked to significant improvements in top- n recommendation accuracy. They also highlight RecWalk’s potential in providing a framework for boosting the performance of item-based models. RecWalk achieves state-of-the-art top- n recommendation quality outperforming several competing approaches, including recently proposed methods that rely on deep neural networks. 
    more » « less
  3. Collaborative filtering (CF) methods are making an impact on our daily lives in a wide range of applications, including recommender systems and personalization. Latent factor methods, e.g., matrix factorization (MF), have been the state-of-the-art in CF, however they lack interpretability and do not provide a straightforward explanation for their predictions. Explainability is gaining momentum in recommender systems for accountability, and because a good explanation can swing an undecided user. Most recent explainable recommendation methods require auxiliary data such as review text or item content on top of item ratings. In this paper, we address the case where no additional data are available and propose augmenting the classical MF framework for CF with a prior that encodes each user's embedding as a sparse linear combination of item embeddings, and vice versa for each item embedding. Our XPL-CF approach automatically reveals these user-item relationships, which underpin the latent factors and explain how the resulting recommendations are formed. We showcase the effectiveness of XPL-CF on real data from various application domains. We also evaluate the explainability of the user-item relationship obtained from XPL-CF through numeric evaluation and case study examples. 
    more » « less
  4. null (Ed.)
    Collaborative filtering algorithms find useful patterns in rating and consumption data and exploit these patterns to guide users to good items. Many of these patterns reflect important real-world phenomena driving interactions between the various users and items; other patterns may be irrelevant or reflect undesired discrimination, such as discrimination in publishing or purchasing against authors who are women or ethnic minorities. In this work, we examine the response of collaborative filtering recommender algorithms to the distribution of their input data with respect to one dimension of social concern, namely content creator gender. Using publicly available book ratings data, we measure the distribution of the genders of the authors of books in user rating profiles and recommendation lists produced from this data. We find that common collaborative filtering algorithms tend to propagate at least some of each user’s tendency to rate or read male or female authors into their resulting recommendations, although they differ in both the strength of this propagation and the variance in the gender balance of the recommendation lists they produce. The data, experimental design, and statistical methods are designed to be reusable for studying potentially discriminatory social dimensions of recommendations in other domains and settings as well. 
    more » « less
  5. Cross-domain collaborative filtering recommenders exploit data from other domains (e.g., movie ratings) to predict users’ interests in a different target domain (e.g., suggest music). Most current cross-domain recommenders focus on modeling user ratings but pay limited attention to user reviews. Additionally, due to the complexity of these recommender systems, they cannot provide any information to users to support user decisions. To address these challenges, we propose Deep Hybrid Cross Domain (DHCD) model, a cross-domain neural framework, that can simultaneously predict user ratings, and provide useful information to strengthen the suggestions and support user decision across multiple domains. Specifically, DHCD enhances the predicted ratings by jointly modeling two crucial facets of users’ product assessment: ratings and reviews. To support decisions, it models and provides natural review-like sentences across domains according to user interests and item features. This model is robust in integrating user rating and review information from more than two domains. Our extensive experiments show that DHCD can significantly outperform advanced baselines in rating predictions and review generation tasks. For rating prediction tasks, it outperforms cross-domain and single-domain collaborative filtering as well as hybrid recommender systems. Furthermore, our review generation experiments suggest an improved perplexity score and transfer of review information in DHCD. 
    more » « less