Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We place a molecular Bose-Einstein condensate in a 1D shaken lattice with a Floquet-engineered dispersion, and observe the dynamics in both position and momentum space. At the initial condition of zero momentum, our engineered dispersion is inverted, and therefore unstable. We observe that the condensate is destabilized by the lattice shaking as expected, but rather than decaying incoherently or producing jets, as in other unstable condensates, under our conditions the condensate bifurcates into two portions in momentum space, with each portion subsequently following semi-classical trajectories that suffer minimal spreading in momentum space as they evolve. We can model the evolution with a Gross-Pitaevskii equation, which suggests the initial bifurcation is facilitate by a nearly linear “inverted V”-shaped dispersion at the zone center, while the lack of spreading in momentum space is facilitated by interactions, as in a soliton. We propose that this relatively clean bifurcation in momentum space has applications for counter-diabatic preparation of exotic ground states in many-body quantum simulation schemes.more » « less
-
This paper presents a Ferroelectric FET (FeFET) based processing-in-memory (PIM) architecture to accelerate inference of deep neural networks (DNNs). We propose a digital in-memory vector-matrix multiplication (VMM) engine design utilizing the FeFET crossbar to enables bit-parallel computation and eliminate analog-to-digital conversion in prior mixed-signal PIM designs. A dedicated hierarchical network-on-chip (H-NoC) is developed for input broadcasting and on-the-fly partial results processing, reducing the data transmission volume and latency. Simulations in 28nm CMOS technology show 115x and 6.3x higher computing efficiency (GOPs/W) over desktop GPU (Nvidia GTX 1080Ti) and ReRAM based design, respectively.more » « less