skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Lopez-Rios, Raymond"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Soliton microcombs are a promising new approach for photonic-based microwave signal synthesis. To date, however, the tuning rate has been limited in microcombs. Here, we demonstrate the first microwave-rate soliton microcomb whose repetition rate can be tuned at a high speed. By integrating an electro-optic modulation element into a lithium niobate comb microresonator, a modulation bandwidth up to 75 MHz and a continuous frequency modulation rate up to 5.0 × 1014Hz/s are achieved, several orders-of-magnitude faster than existing microcomb technology. The device offers a significant bandwidth of up to tens of gigahertz for locking the repetition rate to an external microwave reference, enabling both direct injection locking and feedback locking to the comb resonator itself without involving external modulation. These features are especially useful for disciplining an optical voltage-controlled oscillator to a long-term reference and the demonstrated fast repetition rate control is expected to have a profound impact on all applications of frequency combs.

    more » « less
  2. Abstract

    The development of integrated semiconductor lasers has miniaturized traditional bulky laser systems, enabling a wide range of photonic applications. A progression from pure III-V based lasers to III-V/external cavity structures has harnessed low-loss waveguides in different material systems, leading to significant improvements in laser coherence and stability. Despite these successes, however, key functions remain absent. In this work, we address a critical missing function by integrating the Pockels effect into a semiconductor laser. Using a hybrid integrated III-V/Lithium Niobate structure, we demonstrate several essential capabilities that have not existed in previous integrated lasers. These include a record-high frequency modulation speed of 2 exahertz/s (2.0 × 1018Hz/s) and fast switching at 50 MHz, both of which are made possible by integration of the electro-optic effect. Moreover, the device co-lases at infrared and visible frequencies via the second-harmonic frequency conversion process, the first such integrated multi-color laser. Combined with its narrow linewidth and wide tunability, this new type of integrated laser holds promise for many applications including LiDAR, microwave photonics, atomic physics, and AR/VR.

    more » « less
  3. Abstract

    High‐coherence visible and near‐visible laser sources are centrally important to the operation of advanced position/navigation/timing systems as well as classical/quantum sensing systems. However, the complexity and size of these bench‐top lasers are an impediment to their transition beyond the laboratory. Here, a system‐on‐chip that emits high‐coherence near‐visible lightwaves is demonstrated. The devices rely upon a new approach wherein wavelength conversion and coherence increase by self‐injection locking are combined within a single nonlinear resonator. This simplified approach is demonstrated in a hybridly‐integrated device and provides a short‐term linewidth of around 4.7 kHz (10 kHz before filtering). On‐chip converted optical power over 2 mW is also obtained. Moreover, measurements show that heterogeneous integration can result in a conversion efficiency higher than 25% with an output power over 11 mW. Because the approach uses mature III–V pump lasers in combination with thin‐film lithium niobate, it can be scaled for low‐cost manufacturing of high‐coherence visible emitters. Also, the coherence generation process can be transferred to other frequency conversion processes, including optical parametric oscillation, sum/difference frequency generation, and third‐harmonic generation.

    more » « less