- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
00000030000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Loquet, Antoine (3)
-
Habenstein, Birgit (2)
-
Berbon, Mélanie (1)
-
Brown, Chelsea M. (1)
-
Chavent, Matthieu (1)
-
Chen, Jiaxing (1)
-
Chiricotto, Mara (1)
-
Choi, Yeol Kyo (1)
-
Corey, Robin A. (1)
-
Dao, Hanh H. (1)
-
De Simone, Alfonso (1)
-
Derreumaux, Philippe (1)
-
Destainville, Nicolas (1)
-
Doig, Andrew J. (1)
-
Dokholyan, Nikolay V. (1)
-
Dominguez, Laura (1)
-
Faller, Peter (1)
-
Fullam, Elizabeth (1)
-
Ganguly, Pritam (1)
-
Gao, Ya (1)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mycobacterium tuberculosis ( Mtb ) is the causative agent of tuberculosis (TB), a disease that claims ~1.6 million lives annually. The current treatment regime is long and expensive, and missed doses contribute to drug resistance. Therefore, development of new anti-TB drugs remains one of the highest public health priorities. Mtb has evolved a complex cell envelope that represents a formidable barrier to antibiotics. The Mtb cell envelop consists of four distinct layers enriched for Mtb specific lipids and glycans. Although the outer membrane, comprised of mycolic acid esters, has been extensively studied, less is known about the plasma membrane, which also plays a critical role in impacting antibiotic efficacy. The Mtb plasma membrane has a unique lipid composition, with mannosylated phosphatidylinositol lipids (phosphatidyl-myoinositol mannosides, PIMs) comprising more than 50% of the lipids. However, the role of PIMs in the structure and function of the membrane remains elusive. Here, we used multiscale molecular dynamics (MD) simulations to understand the structure-function relationship of the PIM lipid family and decipher how they self-organize to shape the biophysical properties of mycobacterial plasma membranes. We assess both symmetric and asymmetric assemblies of the Mtb plasma membrane and compare this with residue distributions of Mtb integral membrane protein structures. To further validate the model, we tested known anti-TB drugs and demonstrated that our models agree with experimental results. Thus, our work sheds new light on the organization of the mycobacterial plasma membrane. This paves the way for future studies on antibiotic development and understanding Mtb membrane protein function.more » « less
-
Hassan, Alia ; Quinn, Caitlin M. ; Struppe, Jochem ; Sergeyev, Ivan V. ; Zhang, Chunting ; Guo, Changmiao ; Runge, Brent ; Theint, Theint ; Dao, Hanh H. ; Jaroniec, Christopher P. ; et al ( , Journal of Magnetic Resonance)null (Ed.)
-
Nguyen, Phuong H. ; Ramamoorthy, Ayyalusamy ; Sahoo, Bikash R. ; Zheng, Jie ; Faller, Peter ; Straub, John E. ; Dominguez, Laura ; Shea, Joan-Emma ; Dokholyan, Nikolay V. ; De Simone, Alfonso ; et al ( , Chemical Reviews)null (Ed.)