skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lorenzo, Beatriz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2025
  2. Free, publicly-accessible full text available August 1, 2025
  3. null (Ed.)
    The sixth-generation (6G) of wireless communications systems will significantly rely on fog/edge network architectures for service provisioning. To realize this vision, AI-based fog/edge enabled reinforcement solutions are needed to serve highly stringent applications using dynamically varying resources. In this paper, we propose a cognitive dynamic fog/edge network where primary nodes (PNs) temporarily share their resources and act as fog nodes (FNs) for secondary nodes (SNs). Under this architecture, that unleashes multiple access opportunities, we design distributed fog probing schemes for SNs to search for available connections to access neighbouring FNs. Since the availability of these connections varies in time, we develop strategies to enhance the robustness to the uncertain availability of channels and fog nodes, and reinforce the connections with the FNs. A robustness control optimization is formulated with the aim to maximize the expected total long-term reliability of SNs' transmissions. The problem is solved by an online robustness control (ORC) algorithm that involves online fog probing and an index-based connectivity activation policy derived from restless multi-armed bandits (RMABs) model. Simulation results show that our ORC scheme significantly improves the network robustness, the connectivity reliability and the number of completed transmissions. In addition, by activating the connections with higher indexes, the total long-term reliability optimization problem is solved with low complexity. 
    more » « less
  4. Dynamic spectrum sharing between licensed incumbent users (IUs) and unlicensed wireless industries has been well recognized as an efficient approach to solving spectrum scarcity as well as creating spectrum markets. Recently, both U.S. and European governments called a ruling on opening up spectrum that was initially licensed to sensitive military/federal systems. However, this introduces serious concerns on operational privacy (e.g., location, time and frequency of use) of IUs for national security concerns. Although several works have proposed obfuscation methods to address this problem, these techniques only rely on syntactic privacy models, lacking rigorous privacy guarantee. In this paper, we propose a comprehensive framework to provide real-time differential location privacy for sensitive IUs. We design a utility-optimal differentially private mechanism to reduce the loss in spectrum efficiency while protecting IUs from harmful interference. Furthermore, we strategically combine differential privacy with another privacy notion, expected inference error, to provide double shield protection for IU’s location privacy. Extensive simulations are conducted to validate our design and demonstrate significant improvements in utility and location privacy compared with other existing mechanisms. 
    more » « less