In dynamic spectrum access (DSA), Environmental Sensing Capability (ESC) systems are implemented to detect the incumbent users' (IU) activities for protecting them from secondary users' (SU) interference as well as maximizing secondary spectrum usage. However, IU location information is often highly sensitive and hence it is preferable to hide its true location under the detection of ESCs. In this paper, we design novel schemes to preserve both static and moving IU's location information by adjusting IU's radiation pattern and transmit power. We first formulate IU privacy protection problem for static IU. Due to the intractable nature of this problem, we propose a heuristic approach based on sampling. We also formulate the privacy protection problem for moving IUs, in which two cases are analyzed: (1) protect IU's moving traces; (2) protect its real-time current location information. Our analysis provides insightful advice for IU to preserve its location privacy against ESCs. Simulation results show that our approach provides great protection for IU's location privacy.
more »
« less
DPavatar: A Real-time Location Protection Framework for Incumbent Users in Cognitive Radio Networks
Dynamic spectrum sharing between licensed incumbent users (IUs) and unlicensed wireless industries has been well recognized as an efficient approach to solving spectrum scarcity as well as creating spectrum markets. Recently, both U.S. and European governments called a ruling on opening up spectrum that was initially licensed to sensitive military/federal systems. However, this introduces serious concerns on operational privacy (e.g., location, time and frequency of use) of IUs for national security concerns. Although several works have proposed obfuscation methods to address this problem, these techniques only rely on syntactic privacy models, lacking rigorous privacy guarantee. In this paper, we propose a comprehensive framework to provide real-time differential location privacy for sensitive IUs. We design a utility-optimal differentially private mechanism to reduce the loss in spectrum efficiency while protecting IUs from harmful interference. Furthermore, we strategically combine differential privacy with another privacy notion, expected inference error, to provide double shield protection for IU’s location privacy. Extensive simulations are conducted to validate our design and demonstrate significant improvements in utility and location privacy compared with other existing mechanisms.
more »
« less
- PAR ID:
- 10112310
- Date Published:
- Journal Name:
- IEEE Transactions on Mobile Computing
- ISSN:
- 1536-1233
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Database driven dynamic spectrum sharing is one of the most promising dynamic spectrum access (DSA) solution to address the spectrum scarcity issue. In such a database driven DSA system, the centralized spectrum management infrastructure, called spectrum access system (SAS), makes its spectrum allocation decisions to secondary users (SUs) according to sensitive operational data of incumbent users (IUs). Since both SAS and SUs are not necessarily fully trusted, privacy protection against untrusted SAS and SUs become critical for IUs that have high operational privacy requirements. To address this problem, many IU privacy preserving solutions emerge recently. However, there is a lack of understanding and comparison of capability in protecting IU operational privacy under these existing approaches. In this paper, thus, we fill in the void by providing a comparative study that investigates existing solutions and explores several existing metrics to evaluate the strength of privacy protection. Moreover, we propose two general metrics to evaluate privacy preserving level and evaluate existing works with them.more » « less
-
In this article, we present a detailed review of current practices and state-of-the-art methodologies in the field of differential privacy (DP), with a focus of advancing DP’s deployment in real-world applications. Key points and high-level contents of the article were originated from the discussions from “Differential Privacy (DP): Challenges Towards the Next Frontier,” a workshop held in July 2022 with experts from industry, academia, and the public sector seeking answers to broad questions pertaining to privacy and its implications in the design of industry-grade systems.This article aims to provide a reference point for the algorithmic and design decisions within the realm of privacy, highlighting important challenges and potential research directions. Covering a wide spectrum of topics, this article delves into the infrastructure needs for designing private systems, methods for achieving better privacy/utility trade-offs, performing privacy attacks and auditing, as well as communicating privacy with broader audiences and stakeholders.more » « less
-
Dynamic Spectrum Access (DSA) is a promising solution to alleviate spectrum crowding. However, geolocation database-driven spectrum access system (SAS) presents privacy risks, as sensitive Incumbent User (IU) operation parameters are required to be stored by SAS in order to perform spectrum assignments properly. These sensitive operation parameters may potentially be compromised if SAS is the target of a cyber attack or SU inference attack. In this paper, we propose a novel privacy-preserving SAS-based DSA framework, Suspicion Zone SAS (SZ-SAS). This is the first framework which protects against both the scenario of inference attacks in an area with sparsely distributed IUs and the scenario of untrusted or compromised SAS. Evaluation results show SZ-SAS is capable of utilizing compatible obfuscation schemes to prevent the SU inference attack, while operating using only homomorphically encrypted IU operation parameters.more » « less
-
Graphs are the dominant formalism for modeling multi-agent systems. The algebraic connectivity of a graph is particularly important because it provides the convergence rates of consensus algorithms that underlie many multi-agent control and optimization techniques. However, sharing the value of algebraic connectivity can inadvertently reveal sensitive information about the topology of a graph, such as connections in social networks. Therefore, in this work we present a method to release a graph’s algebraic connectivity under a graph-theoretic form of differential privacy, called edge differential privacy. Edge differential privacy obfuscates differences among graphs’ edge sets and thus conceals the absence or presence of sensitive connections therein. We provide privacy with bounded Laplace noise, which improves accuracy relative to conventional unbounded noise. The private algebraic connectivity values are analytically shown to provide accurate estimates of consensus convergence rates, as well as accurate bounds on the diameter of a graph and the mean distance between its nodes. Simulation results confirm the utility of private algebraic connectivity in these contexts.more » « less