skip to main content


Search for: All records

Creators/Authors contains: "Lorito, Stefano"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Mediterranean Hellenic Arc subduction zone (HASZ) has generatedseveral Mw>=8 earthquakes and tsunamis.Seismic-probabilistic tsunami hazard assessment typically utilizesuniform or stochastic earthquake models, which may not represent dynamicrupture and tsunami generation complexity. We present an ensemble of ten3D dynamic rupture earthquake scenarios for the HASZ, utilizing arealistic slab geometry. Our simplest models use uniform along-arcpre-stresses or a single circular initial stress asperity. We thenintroduce progressively more complex models varying initial shear stressalong-arc, multiple asperities based on scale-dependent critical slipweakening distance, and a most complex model blending all aforementionedheterogeneities. Thereby, regional initial conditions are constrainedwithout relying on detailed geodetic locking models. Varying hypocenterlocations in the simplest, homogeneous model leads to different rupturespeeds and moment magnitudes. We observe dynamic fault slip penetratingthe shallow slip-strengthening region and affecting seafloor uplift.Off-fault plastic deformation can double vertical seafloor uplift. Asingle-asperity model generates a Mw~8 scenarioresembling the 1303 Crete earthquake. Using along-strike varying initialstresses results in Mw~8.0-8.5 dynamic rupture scenarioswith diverse slip rates and uplift patterns. The model with the mostheterogeneous initial conditions yields a Mw~7.5scenario. Dynamic rupture complexity in prestress and fracture energytends to lower earthquake magnitude but enhances tsunamigenicdisplacements. Our results offer insights into the dynamics of potentiallarge Hellenic Arc megathrust earthquakes and may inform futurephysics-based joint seismic and tsunami hazard assessments.

     
    more » « less
    Free, publicly-accessible full text available May 2, 2025
  2. Abstract

    The Mediterranean Hellenic Arc subduction zone (HASZ) has generated several 8 earthquakes and tsunamis. Seismic‐probabilistic tsunami hazard assessment typically utilizes uniform or stochastic earthquake models, which may not represent dynamic rupture and tsunami generation complexity. We present an ensemble of ten 3D dynamic rupture earthquake scenarios for the HASZ, utilizing a realistic slab geometry. Our simplest models use uniform along‐arc pre‐stresses or a single circular initial stress asperity. We then introduce progressively more complex models varying initial shear stress along‐arc, multiple asperities based on scale‐dependent critical slip weakening distance, and a most complex model blending all aforementioned heterogeneities. Thereby, regional initial conditions are constrained without relying on detailed geodetic locking models. Varying epicentral locations in the simplest, homogeneous model leads to different rupture speeds and moment magnitudes. We observe dynamic fault slip penetrating the shallow slip‐strengthening region and affecting seafloor uplift. Off‐fault plastic deformation can double vertical seafloor uplift. A single‐asperity model generates a 8 scenario resembling the 1303 Crete earthquake. Using along‐strike varying initial stresses results in 8.0–8.5 dynamic rupture scenarios with diverse slip rates and uplift patterns. The model with the most heterogeneous initial conditions yields a 7.5 scenario. Dynamic rupture complexity in prestress and fracture energy tends to lower earthquake magnitude but enhances tsunamigenic displacements. Our results offer insights into the dynamics of potential large Hellenic Arc megathrust earthquakes and may inform future physics‐based joint seismic and tsunami hazard assessments.

     
    more » « less