- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Yuguo (3)
-
Loyal, Joshua D (2)
-
Loyal, Joshua D. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Latent space models are often used to model network data by embedding a network’s nodes into a low-dimensional latent space; however, choosing the dimension of this space remains a challenge. To this end, we begin by formalizing a class of latent space models we call generalized linear network eigenmodels that can model various edge types (binary, ordinal, nonnegative continuous) found in scientific applications. This model class subsumes the traditional eigenmodel by embedding it in a generalized linear model with an exponential dispersion family random component and fixes identifiability issues that hindered interpretability. We propose a Bayesian approach to dimension selection for generalized linear network eigenmodels based on an ordered spike-and-slab prior that provides improved dimension estimation and satisfies several appealing theoretical properties. We show that the model’s posterior is consistent and concentrates on low-dimensional models near the truth. We demonstrate our approach’s consistent dimension selection on simulated networks, and we use generalized linear network eigenmodels to study the effect of covariates on the formation of networks from biology, ecology, and economics and the existence of residual latent structure.more » « lessFree, publicly-accessible full text available March 19, 2026
-
Loyal, Joshua D.; Chen, Yuguo (, Journal of machine learning research)
-
Loyal, Joshua D; Chen, Yuguo (, Bayesian Analysis)
An official website of the United States government

Full Text Available