skip to main content

Search for: All records

Creators/Authors contains: "Lu, Jennifer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2024
  2. Carbon nanocomposites based on transition-metal oxides have been attracting extensive attention as cost-effective catalysts towards the oxygen reduction reaction (ORR). However, the activity remains subpar as compared to state-of-the-art platinum catalysts. One way to enhance the ORR performance is to dope a second metal into the nanocomposite to manipulate the electronic structure and hence the interactions with key reaction intermediates. Herein, dual metal (Ru and Fe) and nitrogen codoped carbon (RuFe-NC) nanocomposites were synthesized by controlled pyrolysis of a Fe–Ru–Fe trinuclear complex along with zeolitic imidazolate framework-8. The obtained porous nanocomposites consisted of Ru-doped Fe 2 O 3 nanoparticles embedded within a carbon scaffold, and exhibited an ORR activity in alkaline media rivaling that of commercial Pt/C, which was also markedly better than those of the monometallic counterparts and nanocomposites prepared with a simple mixture of the individual monometallic compound precursors. Structural characterization suggests that the use of the trinuclear complex facilitated the atomic dispersion of ruthenium within the iron oxide nanoparticles and charge transfer between the metal centers led to a high ORR activity. Results from this study suggest that rational design of heteronuclear complexes may be a unique strategy in the structural engineering of carbon-metal nanocomposites for high-performancemore »electrocatalysis.« less
    Free, publicly-accessible full text available June 6, 2023
  3. Rzhetsky, Andrey (Ed.)
    GC skew is a phenomenon observed in many bacterial genomes, wherein the two replication strands of the same chromosome contain different proportions of guanine and cytosine nucleotides. Here we demonstrate that this phenomenon, which was first discovered in the mid-1990s, can be used today as an analysis tool for the 15,000+ complete bacterial genomes in NCBI’s Refseq library. In order to analyze all 15,000+ genomes, we introduce a new method, SkewIT (Skew Index Test), that calculates a single metric representing the degree of GC skew for a genome. Using this metric, we demonstrate how GC skew patterns are conserved within certain bacterial phyla, e.g. Firmicutes, but show different patterns in other phylogenetic groups such as Actinobacteria. We also discovered that outlier values of SkewIT highlight potential bacterial mis-assemblies. Using our newly defined metric, we identify multiple mis-assembled chromosomal sequences in previously published complete bacterial genomes. We provide a SkewIT web app that calculates SkewI for any user-provided bacterial sequence. The web app also provides an interactive interface for the data generated in this paper, allowing users to further investigate the SkewI values and thresholds of the Refseq-97 complete bacterial genomes. Individual scripts for analysis of bacterial genomes are providedmore »in the following repository: .« less
  4. Free, publicly-accessible full text available December 3, 2023