- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
He, Jie (3)
-
Lu, Kezhou (3)
-
Fosu, Boniface (2)
-
Deng, Yi (1)
-
Fueglistaler, Stephan A. (1)
-
Lin, Yen‐Heng (1)
-
Simpson, Isla R. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
He, Jie; Deng, Yi; Fosu, Boniface; Lin, Yen‐Heng; Lu, Kezhou (, Geophysical Research Letters)Abstract Regional hydrological sensitivity (i.e., precipitation change per degree local surface warming) contributes substantially to the uncertainty in future precipitation projections over tropical oceans. Here, we investigate the sensitivity of relative precipitation (P*, precipitation divided by the basin average precipitation) to local sea surface temperature (SST) change by dissecting it into three components, namely the sensitivity of P* to relative SST (SSTrel, SST minus the tropical mean SST) changes, the sensitivity of P* to surface convergence changes, and the sensitivity of surface convergence to SST gradient changes. We show that the relationships between P* and SSTrel, and between P*, surface convergence, and SST gradients are largely constant during climate change. This allows us to constrain regional hydrological sensitivity based on present‐day SST‐precipitation relationships. The sensitivity of surface convergence to SST gradient changes is a main source of uncertainty in regional hydrological sensitivity and is likely underestimated in GCMs.more » « less
-
Lu, Kezhou; He, Jie; Simpson, Isla R. (, Geophysical Research Letters)Abstract The variability of the summer North Pacific Subtropical High (NPSH) has substantial socioeconomic impacts. However, state‐of‐the‐art climate models significantly disagree on the response of the NPSH to anthropogenic warming. Inter‐model spread in NPSH projections originates from models' inconsistency in simulating tropical precipitation changes. This inconsistency in precipitation changes is partly due to inter‐model spread in tropical sea surface temperature (SST) changes, but it can also occur independently of uncertainty in SST changes. Here, we show that both types of precipitation uncertainty influence the NPSH via the Matsuno‐Gill wave response, but their relative impact varies by region. Through the modulation of low cloud fraction, inter‐model spread of the NPSH can have a further impact on extra‐tropical land surface temperature. The teleconnection between tropical precipitation and the NPSH is examined through a series of numerical experiments.more » « less
An official website of the United States government
