Abstract The variability of the summer North Pacific Subtropical High (NPSH) has substantial socioeconomic impacts. However, state‐of‐the‐art climate models significantly disagree on the response of the NPSH to anthropogenic warming. Inter‐model spread in NPSH projections originates from models' inconsistency in simulating tropical precipitation changes. This inconsistency in precipitation changes is partly due to inter‐model spread in tropical sea surface temperature (SST) changes, but it can also occur independently of uncertainty in SST changes. Here, we show that both types of precipitation uncertainty influence the NPSH via the Matsuno‐Gill wave response, but their relative impact varies by region. Through the modulation of low cloud fraction, inter‐model spread of the NPSH can have a further impact on extra‐tropical land surface temperature. The teleconnection between tropical precipitation and the NPSH is examined through a series of numerical experiments.
more »
« less
Constraining Regional Hydrological Sensitivity Over Tropical Oceans
Abstract Regional hydrological sensitivity (i.e., precipitation change per degree local surface warming) contributes substantially to the uncertainty in future precipitation projections over tropical oceans. Here, we investigate the sensitivity of relative precipitation (P*, precipitation divided by the basin average precipitation) to local sea surface temperature (SST) change by dissecting it into three components, namely the sensitivity of P* to relative SST (SSTrel, SST minus the tropical mean SST) changes, the sensitivity of P* to surface convergence changes, and the sensitivity of surface convergence to SST gradient changes. We show that the relationships between P* and SSTrel, and between P*, surface convergence, and SST gradients are largely constant during climate change. This allows us to constrain regional hydrological sensitivity based on present‐day SST‐precipitation relationships. The sensitivity of surface convergence to SST gradient changes is a main source of uncertainty in regional hydrological sensitivity and is likely underestimated in GCMs.
more »
« less
- PAR ID:
- 10544154
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 18
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. The warmer early Pliocene climate featured changes to global sea surface temperature (SST) patterns, namely a reduction in the Equator–pole gradient and the east–west SST gradient in the tropical Pacific, the so-called “permanent El Niño”. Here we investigate the consequences of the SST changes to silicate weathering and thus to atmospheric CO2 on geological timescales. Different SST patterns than today imply regional modifications of the hydrological cycle that directly affect continental silicate weathering in particular over tropical “hotspots” of weathering, such as the Maritime Continent, thus leading to a “weatherability pattern effect”. We explore the impact of Pliocene-like SST changes on weathering using climate model and silicate weathering model simulations, and we deduce CO2 and temperature at carbon cycle equilibrium between solid Earth degassing and silicate weathering. In general, we find large regional increases and decreases in weathering fluxes, and the net effect depends on the extent to which they cancel. Permanent El Niño conditions lead to a small amplification of warming relative to the present day by 0.4 ∘C, suggesting that the demise of the permanent El Niño could have had a small amplifying effect on cooling from the early Pliocene into the Pleistocene. For the reducedEquator–pole gradient, the weathering increases and decreases largely cancel, leading to no detectable difference in global temperature at carbon cycle equilibrium. A robust SST reconstruction of the Pliocene is needed for a quantitative evaluation of the weatherability pattern effect.more » « less
-
Abstract The Paleocene‐Eocene Thermal Maximum (PETM, ∼56 million years ago) is among the best‐studied climatic warming events in Earth history and is often compared to projected anthropogenic climate change. The PETM is characterized by a rapid negative carbon isotope excursion and global temperature increase of 4–5°C, accompanied by changes in spatial patterns of evaporation and precipitation in the global hydrologic cycle. Recent climate model reconstructions suggest a regionally complex and non‐linear response of one important aspect of global hydrology: enhanced moisture flux from the low‐latitude ocean. In this study, we use the elemental and stable isotope geochemistry of surface‐dwelling planktic foraminifera from a low‐latitude Atlantic deep‐sea sedimentary record (IODP Site 1258) to quantify changes in sea‐surface temperature (SST) and salinity. Foraminiferal Mg/Ca and δ18O values are interpreted with a Bayesian forward proxy system model to reconstruct how SST and salinity changed over the PETM at this site. These temperature and salinity reconstructions are then compared to recent climate model simulations of Eocene warming. Our reconstructions indicate °C of warming, in excellent agreement with estimates from other tropical locations and modeled PETM warmth. The regional change in salinity is not as straightforward, demonstrating a slight decrease at extremepCO2forcing (a reversal of the modeled sense of change under moderatepCO2forcing) in both model and proxy reconstructions. The cause of this non‐linear response is unclear but may relate to increased South American continental runoff or shifts in the Inter‐Tropical Convergence Zone.more » « less
-
Abstract The Pliocene offers insights into future climate, with near‐modern atmospheric pCO2and global mean surface temperature estimated to be 3–4°C above pre‐industrial. However, the hydrological response differs between future global warming and early Pliocene climate model simulations. This discrepancy results from the use of reduced meridional and zonal sea surface temperature (SST) gradients, based on foraminiferal Mg/Ca and Alkenone proxy evidence, to force the early Pliocene simulation. Subsequent, SST reconstructions based on the organic proxy TEX86, have found warmer temperatures in the warm pool, bringing the magnitude of the gradient reductions into dispute. We design an independent test of Pliocene SST scenarios and their hydrological cycle “fingerprints.” We use an isotope‐enabled General Circulation Model, iCAM5, to model the distribution of water isotopes in precipitation in response to four climatological SST and sea‐ice fields representing modern, abrupt 4 × CO2, late Pliocene and early Pliocene climates. We conduct a proxy‐model comparison with all the available precipitation isotope proxy data, and we identify target regions that carry precipitation isotopic fingerprints of SST gradients as priorities for additional proxy reconstructions. We identify two regions with distinct precipitation isotope (D/H) fingerprints resulting from reduced SST gradients: the Maritime Continent (D‐enriched due to reduced convective rainfall) and the Sahel (wetter, more deep convection, D‐depleted). The proxy‐model comparison using available plant wax reconstructions, mostly from Africa, is promising but inconclusive. Additional proxy reconstructions are needed in both target regions and in much of the world for significant tests of SST scenarios and dynamical linkages to the hydrological cycle.more » « less
-
Climate models exhibit significant biases in simulating present‐day tropical Pacific sea surface temperature (SST) patterns, particularly the zonal SST gradient, which may contribute to uncertainties in precipitation projections over mid‐latitude populated regions. Biases in the simulated tropical Pacific SST gradient across CMIP6 models significantly influence present‐day and future winter precipitation over South America through a stationary wave pattern resembling the Pacific–South American (PSA‐2) mode. Models with a weaker‐than‐observed SST gradient simulate a deeper trough east of South America, resulting in stronger wetting trends over northern Argentina. Applying observational constraints reduces uncertainties in projected precipitation trends by approximately 31%. For Tasmania and New Zealand, SST gradient biases impact the simulation of present‐day winter precipitation, but are not well correlated with future precipitation projections. Our findings highlight the critical need to accurately represent the tropical Pacific SST gradient and its associated atmospheric circulation features for reliable regional climate simulation.more » « less
An official website of the United States government
