Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2022
-
We have measured new observables based on the final state kinematic imbalances in the mesonless production of ν μ + A → μ − + p + X in the MINERνA tracker. Components of the muon-proton momentum imbalances parallel ( δ p Ty ) and perpendicular ( δ p Tx ) to the momentum transfer in the transverse plane are found to be sensitive to the nuclear effects such as Fermi motion, binding energy, and non-quasielastic (QE) contributions. The QE peak location in δ p Ty is particularly sensitive to the binding energy. Differential cross sections are compared to predictionsmore »
-
Final-state kinematic imbalances are measured in mesonless production of νμ+A→μ−+p+X in the MINERvA tracker. Initial- and final-state nuclear effects are probed using the direction of the μ−−p transverse momentum imbalance and the initial-state momentum of the struck neutron. Differential cross sections are compared to predictions based on current approaches to medium modeling. These models underpredict the cross section at intermediate intranuclear momentum transfers that generally exceed the Fermi momenta. As neutrino interaction models need to correctly incorporate the effect of the nucleus in order to predict neutrino energy resolution in oscillation experiments, this result points to a region of phasemore »
-
Abstract With the advance of particle accelerator and detector technologies, the neutrino physics landscape is rapidly expanding. As neutrino oscillation experiments enter the intensity and precision frontiers, neutrino–nucleus interaction measurements are providing crucial input. MINERvA is an experiment at Fermilab dedicated to the study of neutrino–nucleus interactions in the regime of incident neutrino energies from one to few GeV. The experiment recorded neutrino and antineutrino scattering data with the NuMI beamline from 2009 to 2019 using the Low-Energy and Medium-Energy beams that peak at 3GeV and 6GeV, respectively. This article reviews the broad spectrum of interesting nuclear and particle physicsmore »Free, publicly-accessible full text available December 1, 2022