skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2025

Title: Disruption of a massive molecular cloud by a supernova in the Galactic Centre: Initial results from the ACES project
The Milky Way’s Central Molecular Zone (CMZ) differs dramatically from our local solar neighbourhood, both in the extreme interstellar medium conditions it exhibits (e.g. high gas, stellar, and feedback density) and in the strong dynamics at play (e.g. due to shear and gas influx along the bar). Consequently, it is likely that there are large-scale physical structures within the CMZ that cannot form elsewhere in the Milky Way. In this paper, we present new results from the Atacama Large Millimeter/submillimeter Array (ALMA) large programme ACES (ALMA CMZ Exploration Survey) and conduct a multi-wavelength and kinematic analysis to determine the origin of the M0.8–0.2 ring, a molecular cloud with a distinct ring-like morphology. We estimate the projected inner and outer radii of the M0.8–0.2 ring to be 79″ and 154″, respectively (3.1 pc and 6.1 pc at an assumed Galactic Centre distance of 8.2 kpc) and calculate a mean gas density >104cm−3, a mass of ~106M, and an expansion speed of ~20 km s−1, resulting in a high estimated kinetic energy (>1051erg) and momentum (>107Mkm s−1). We discuss several possible causes for the existence and expansion of the structure, including stellar feedback and large-scale dynamics. We propose that the most likely cause of the M0.8–0.2 ring is a single high-energy hypernova explosion. To viably explain the observed morphology and kinematics, such an explosion would need to have taken place inside a dense, very massive molecular cloud, the remnants of which we now see as the M0.8–0.2 ring. In this case, the structure provides an extreme example of how supernovae can affect molecular clouds.  more » « less
Award ID(s):
2142300 2206511 2145689 2206510 2206509 2108938
PAR ID:
10569681
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Astronomy and Astrophysics
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
691
ISSN:
0004-6361
Page Range / eLocation ID:
A70
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The interstellar medium in the Milky Way’s Central Molecular Zone (CMZ) is known to be strongly magnetised, but its large-scale morphology and impact on the gas dynamics are not well understood. We explore the impact and properties of magnetic fields in the CMZ using three-dimensional non-self gravitating magnetohydrodynamical simulations of gas flow in an external Milky Way barred potential. We find that: (1) The magnetic field is conveniently decomposed into a regular time-averaged component and an irregular turbulent component. The regular component aligns well with the velocity vectors of the gas everywhere, including within the bar lanes. (2) The field geometry transitions from parallel to the Galactic plane near ɀ = 0 to poloidal away from the plane. (3) The magneto-rotational instability (MRI) causes an in-plane inflow of matter from the CMZ gas ring towards the central few parsecs of 0.01−0.1 Myr−1that is absent in the unmagnetised simulations. However, the magnetic fields have no significant effect on the larger-scale bar-driven inflow that brings the gas from the Galactic disc into the CMZ. (4) A combination of bar inflow and MRI-driven turbulence can sustain a turbulent vertical velocity dispersion ofσɀ= 5 km s−1on scales of 20 pc in the CMZ ring. The MRI alone sustains a velocity dispersion ofσɀ≃ 3 km s−1. Both these numbers are lower than the observed velocity dispersion of gas in the CMZ, suggesting that other processes such as stellar feedback are necessary to explain the observations. (5) Dynamo action driven by differential rotation and the MRI amplifies the magnetic fields in the CMZ ring until they saturate at a value that scales with the average local density asB≃ 102 (n/103cm−3)0.33µG. Finally, we discuss the implications of our results within the observational context in the CMZ. 
    more » « less
  2. Abstract The Central Molecular Zone (CMZ) is the way station at the heart of our Milky Way Galaxy, connecting gas flowing in from Galactic scales with the central nucleus. Key open questions remain about its 3D structure, star formation properties, and role in regulating this gas inflow. In this work, we identify a hierarchy of discrete structures in the CMZ using column density maps from Paper I (C. Battersby et al.) We calculate the physical (N(H2),Tdust, mass, radius) and kinematic (HNCO, HCN, and HC3N moments) properties of each structure as well as their bolometric luminosities and star formation rates. We compare these properties with regions in the Milky Way disk and external galaxies. Despite the fact that the CMZ overall is well below the Gao-Solomon dense gas star formation relation (and in modest agreement with the Schmidt–Kennicutt relation), individual structures on the scale of molecular clouds generally follow these star formation relations and agree well with other Milky Way and extragalactic regions. We find that individual CMZ structures require a large external pressure (Pe/kB> 107−9K cm−3) to be considered bound; however, simple estimates suggest that most CMZ molecular-cloud-sized structures are consistent with being in pressure-bounded virial equilibrium. We perform power-law fits to the column density probability distribution functions of the inner 100 pc, SgrB2, and the outer 100 pc of the CMZ as well as several individual molecular cloud structures and find generally steeper power-law slopes (−9 <α< −2) compared with the literature (−6 <α< −1). 
    more » « less
  3. Abstract We use 0.1″ observations from the Atacama Large Millimeter Array (ALMA), Hubble Space Telescope (HST), and JWST to study young massive clusters (YMCs) in their embedded “infant” phase across the central starburst ring in NGC 3351. Our new ALMA data reveal 18 bright and compact (sub-)millimeter continuum sources, of which 8 have counterparts in JWST images and only 6 have counterparts in HST images. Based on the ALMA continuum and molecular line data, as well as ancillary measurements for the HST and JWST counterparts, we identify 14 sources as infant star clusters with high stellar and/or gas masses (∼105M), small radii (≲ 5 pc), large escape velocities (6–10 km s−1), and short freefall times (0.5–1 Myr). Their multiwavelength properties motivate us to divide them into four categories, likely corresponding to four evolutionary stages from starless clumps to exposed Hiiregion–cluster complexes. Leveraging age estimates for HST-identified clusters in the same region, we infer an evolutionary timeline, ranging from ∼1–2 Myr before cluster formation as starless clumps, to ∼4–6 Myr after as exposed Hiiregion–cluster complexes. Finally, we show that the YMCs make up a substantial fraction of recent star formation across the ring, exhibit a nonuniform azimuthal distribution without a very coherent evolutionary trend along the ring, and are capable of driving large-scale gas outflows. 
    more » « less
  4. Abstract We measure the molecular gas environment near recent (<100 yr old) supernovae (SNe) using ∼1″ or ≤150 pc resolution CO (2–1) maps from the PHANGS–Atacama Large Millimeter/submillimeter Array (ALMA) survey of nearby star-forming galaxies. This is arguably the first such study to approach the scales of individual massive molecular clouds (Mmol≳ 105.3M). Using the Open Supernova Catalog, we identify 63 SNe within the PHANGS–ALMA footprint. We detect CO (2–1) emission near ∼60% of the sample at 150 pc resolution, compared to ∼35% of map pixels with CO (2–1) emission, and up to ∼95% of the SNe at 1 kpc resolution, compared to ∼80% of map pixels with CO (2–1) emission. We expect the ∼60% of SNe within the same 150 pc beam, as a giant molecular cloud will likely interact with these clouds in the future, consistent with the observation of widespread SN–molecular gas interaction in the Milky Way, while the other ∼40% of SNe without strong CO (2–1) detections will deposit their energy in the diffuse interstellar medium, perhaps helping drive large-scale turbulence or galactic outflows. Broken down by type, we detect CO (2–1) emission at the sites of ∼85% of our 9 stripped-envelope SNe (SESNe), ∼40% of our 34 Type II SNe, and ∼35% of our 13 Type Ia SNe, indicating that SESNe are most closely associated with the brightest CO (2–1) emitting regions in our sample. Our results confirm that SN explosions are not restricted to only the densest gas, and instead exert feedback across a wide range of molecular gas densities. 
    more » « less
  5. Aims. Thanks to the high angular resolution, sensitivity, image fidelity, and frequency coverage of ALMA, we aim to improve our understanding of star formation. One of the breakthroughs expected from ALMA, which is the basis of our Cycle 5 ALMA-IMF Large Program, is the question of the origin of the initial mass function (IMF) of stars. Here we present the ALMA-IMF protocluster selection, first results, and scientific prospects. Methods. ALMA-IMF imaged a total noncontiguous area of ~53 pc 2 , covering extreme, nearby protoclusters of the Milky Way. We observed 15 massive (2.5 −33 × 10 3 M ⊙ ), nearby (2−5.5 kpc) protoclusters that were selected to span relevant early protocluster evolutionary stages. Our 1.3 and 3 mm observations provide continuum images that are homogeneously sensitive to point-like cores with masses of ~0.2 M ⊙ and ~0.6 M ⊙ , respectively, with a matched spatial resolution of ~2000 au across the sample at both wavelengths. Moreover, with the broad spectral coverage provided by ALMA, we detect lines that probe the ionized and molecular gas, as well as complex molecules. Taken together, these data probe the protocluster structure, kinematics, chemistry, and feedback over scales from clouds to filaments to cores. Results. We classify ALMA-IMF protoclusters as Young (six protoclusters), Intermediate (five protoclusters), or Evolved (four proto-clusters) based on the amount of dense gas in the cloud that has potentially been impacted by H  II region(s). The ALMA-IMF catalog contains ~700 cores that span a mass range of ~0.15 M ⊙ to ~250 M ⊙ at a typical size of ~2100 au. We show that this core sample has no significant distance bias and can be used to build core mass functions (CMFs) at similar physical scales. Significant gas motions, which we highlight here in the G353.41 region, are traced down to core scales and can be used to look for inflowing gas streamers and to quantify the impact of the possible associated core mass growth on the shape of the CMF with time. Our first analysis does not reveal any significant evolution of the matter concentration from clouds to cores (i.e., from 1 pc to 0.01 pc scales) or from the youngest to more evolved protoclusters, indicating that cloud dynamical evolution and stellar feedback have for the moment only had a slight effect on the structure of high-density gas in our sample. Furthermore, the first-look analysis of the line richness toward bright cores indicates that the survey encompasses several tens of hot cores, of which we highlight the most massive in the G351.77 cloud. Their homogeneous characterization can be used to constrain the emerging molecular complexity in protostars of high to intermediate masses. Conclusions. The ALMA-IMF Large Program is uniquely designed to transform our understanding of the IMF origin, taking the effects of cloud characteristics and evolution into account. It will provide the community with an unprecedented database with a high legacy value for protocluster clouds, filaments, cores, hot cores, outflows, inflows, and stellar clusters studies. 
    more » « less